
Development Partnership with the Private Sector

Integrating requirements of Industry 4.0 in TVET

Industry

develoPPP programme of the German Federal Ministry for
Economic Cooperation and Development

Training Module

DVET

Programming of
Mechatronic Systems

Development Partnership with Private Sector

 Integrating requirements of Industry 4.0 in
Technical and Vocational Education and Training

Bosch Rexroth - GIZ - LILAMA 2

Training Module

DVET

Industry

Programming of
Mechatronic Systems

1

Development Partnership with Private Sector
Integrating requirements of Industry 4.0 in TVET
Bosch Rexroth - GIZ - LILAMA 2

Training Module
Industry 4.0 - Programming of Mechatronic Systems
1st Edition

Training Materials – Exercises – Project Works – Solutions

Editorial Board
 Stefan Paschek, Kieu Tan Thoi, Phan Hong Phuong
 Nguyen Trong Tin, Le Van Hung
 Frank Schulze, Ralf Hill

Contributions
 LILAMA 2 International Technology College
 Technology Engineering Faculty
 Training Department
 Quality Assurance Department

 GIZ Programme Reform of TVET in Viet Nam
 Pham Thi Thanh Truc
 Nguyen Minh Cong

Translation English language to Vietnamese
 Nguyen Minh Ngoc
 Tran Simon Trung Hieu

DVET

2

The book Training Module Industry 4.0 – Programming of
Mechatronic Systems is o�cially published by the cooperation

partners of the development partnership
“Integrating requirements of Industry 4.0 in TVET”.

It was disseminated to eleven partner TVET Institutes of the
Programme Reform of TVET in Viet Nam and made available

to other relevant stakeholders in TVET and
in manufacturing industry.

The book can be copied or downloaded on
www.tvet-vietnam.org

free for academic purpose and research without commercial
interest. For any other purpose of use and duplication, inquire

Programme Reform of TVET in Viet Nam for further informa-
tion and permission.

Address: #1, Lane 17, Ta Quang Buu Street, Bach Khoa Ward,
Hai Ba Trung District, Hanoi, Viet Nam

Tel: +84 (0) 24 39 74 64 71
Fax: +84 (0) 24 39 74 65 70

Website: www.tvet-vietnam.org
 www.giz.de/vietnam

3

www.tvet-vietnam.org
www.tvet-vietnam.org
www.giz.de/vietnam

4

Foreword to Industry 4.0 stakeholders in TVET and manufactur-
ing industry
 Technical and Vocational Education and Training (TVET) plays a
crucial role in the development of a skilled and competent work-
force for advanced industrial sectors. The adaptation of knowledge
and skills of the Vietnamese workforce to the new competence
requirements on digitalisation and Industry 4.0 is a challenge that
needs to be addressed by TVET institutes in close cooperation with
the business sector.
 The cooperation partners Bosch Rexroth AG, LILAMA 2 Interna-
tional Technology College (LILAMA 2), with support of the Director-
ate of Vocational Education and Training (DVET), and the Deutsche
Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH tackled

the challenge to qualify technicians and engineers who meet the requirements of Industry 4.0 at
LILAMA 2 and other TVET institutes and implemented the development partnership “Integrating
requirements of Industry 4.0 in TVET”.
 Development partnerships with the Private Sector (DPP) promote private-sector activities where
entrepreneurial opportunities and development policy potential meet and are supported by the
www.develoPPP.de programme of the German Federal Ministry for Economic Cooperation and Devel-
opment (BMZ).
 The main activities of the cooperation partners comprised: raising awareness on necessary changes
in the TVET system in Viet Nam; analysing the current and future demand of the industry; developing
and integrating Industry 4.0 training modules into initial training programmes and further training
courses; developing technical and didactical competencies of TVET teachers and in-company trainers as
well as regular trainees and technical company sta�; disseminating initial and further training
programmes to other TVET institutes and to the TVET system in Viet Nam.
 In this regard, national and international Industry 4.0 experts and curriculum designers developed
the training module “Programming of Mechatronic Systems” with integrated IT-security and further
trained teachers of LILAMA 2 and other partner TVET institutes of the Vietnamese-German Programme
Reform of TVET in Viet Nam as master trainers and multipliers to the TVET system. The competencies
mediated in the module orient on the latest Industry 4.0 quali�cations of the revised German training
ordinance for 3.5-year training in electronic and mechatronic occupations and ful�ll the Industry 4.0
quali�cation demand of national and international companies in Viet Nam.
 The Industry 4.0 training module complies to Circular 03/2017 of the Ministry of Labour, Invalids and
Social A�airs and resembles the structure of the initial training programmes for intermediate and
college levels, developed in the frame of the Programme Reform of TVET in Viet Nam. They are available
for free download at www.tvet-vietnam.org. The teaching and learning material build up on these
programmes and can be o�ered as an elective training module for college graduates of Industrial
Electronic Technician, Mechatronic Technician and Electronic Technician for Energy and Building Technolo-
gy. Furthermore, the module can be o�ered to industry technicians and engineers as further training on
applied Industry 4.0 applications for in the �eld of electronics, mechatronics and automation.
 TVET teachers are recommended to implement the training module “Programming of Mechatron-
ic Systems” as hybrid learning or blended learning, in which trainees learn via electronic and online
media as well as traditional face-to-face teaching and training.
 On behalf of the cooperation partners, we would like to express our utmost gratitude for the assis-
tance of all parties to develop the training module “Programming of Mechatronic Systems” and wish a
successful implementation and dissemination.

Dr Juergen Hartwig
Director
Programme “Reform of TVET in Viet Nam”

FOREWORD

5

www.tvet-vietnam.org

TABLE OF CONTENTS

 ABBREVIATIONS 8

A. TRAINING MODULE 9
Module name and code and scheduled time ... 9
I. Module classi�cation and characteristics . 9
II. Module objectives . 10
III. Module content . 12
 1. General content classi�cation and time allocation .. 12
 2. Detailed content .. 13
 Training Unit 1:Object Oriented Programming ... 13
 Training Unit 2: Microcontroller Programming .. 16
 Training Unit 3:Database Systems ... 18
 Training Unit 4: Data visualisation with dashboards .. 20
IV. Requirements for module implementation . 22
V. Assessment content and methodology . 25
VI. Guidelines for professional module implementation . 28

B. TRAINING UNITS 30

TRAINING UNIT 1: Object Oriented Programming . 30
 1. Object Oriented Programming ... 30
 1.1. Fundamentals of programming ... 30
 1.2 Adapting software modules .. 39
 1.3 Basics of Object Oriented Programming ... 47
 1.4. Extended concepts .. 57
 2. Uni�ed Modeling Language (UML) .. 60
 2.1 What is UML? .. 60
 2.2 Class diagrams to describe software requirements and documentation 61
 2.3 Display and application of class relations .. 64
 2.4 Display of inheritance trees for software documentation .. 65
 2.5 Sequence diagrams to describe communication processes of
 software (PC and mechatronic systems) .. 66
 2.6 Use Case Diagram for high level documentation of use cases .. 67
 2.7 Implementation of UML diagrams ... 69
 3. Analyse tasks and �nd solutions .. 73
 4. Test software and rollout .. 75
 4.1 Clari�cation of the V – Model .. 75
 4.2. Software Testing .. 78
 4.3 Software test plan .. 84

TRAINING UNIT 2: Microcontroller Programming . 94
 1. Microcontroller programming basics .. 94
 1.1. Microcontroller Basics .. 94
 1.2. Basic terms of programming ... 99
 1.3. Di�erence between microcontroller and PLC ... 101
 2. Microcontroller programming and hardware control .. 108
 2.1. Basics of microcontroller programming ... 108
 2.2. Hardware control .. 122

6

7

TABLE OF CONTENTS

 3. Create measuring programmes ... 133
 3.1. Introduction to state machines .. 133
 3.2. Measuring programme ... 140
 4. Communication methods and data exchange ... 142
 4.1. HTTP Requests .. 142
 4.2. Server Communication .. 146
 4.3. Publisher subscriber commuinication .. 155
 Project Microcontroller : Data acquisition in I4.0 Setup .. 160

TRAINING UNIT 3: Database Systems . 181
 1. Database systems basics .. 181
 1.1 Basics for usage of databases .. 181
 1.2 Structure of database .. 191
 2. Handling of databases on server level .. 194
 3. Userprogram with databases .. 197
 Project: Database Systems: Data acquisition in I4.0 Setup ... 204

TRAINING UNIT 4: Data Visualisation with Dashboards . 225
 1. Dashboards basics .. 225
 1.1. De�ning the usage and tasks of dashboards .. 225
 1.2. Theoretical foundations for the creation of web applications 227
 1.3. Comparison of di�erent creation methods .. 227
 1.4. Design guidelines for dashboards .. 231
 1.5. Dashboard limitations .. 237
 1.6. Explanation of the procedure for creating a dashboard .. 239
 1.7. Security aspects for dashboards .. 242
 1.8. Installation of necessary libraries .. 243
 1.9. Explanation of the necessary programming concepts, functions
 and classes to display dashboards .. 245
 1.10. Clari�cation of the necessary web-based programming
 components for dashboard programming ... 247
 2. Possiblities for data visualization .. 249
 2.1. Fundamentals of data visualization .. 249
 2.2. Placement of diagrams in dashboards .. 254
 2.3. Conversion of data from data source to data sink in the diagram 254
 3. Create and deploy dashboards .. 257
 3.1. Implementation of a suitable program logic to create a dashboard .. . 257
 3.2. Consideration of user authentication options for security aspects 259
 3.3. Creating a visualization program ... 260

APPENDIXES 270
 1. Project regions and partnering TVET institutes .. 270
 2. List of charts .. 271
 3. List of tables .. 271
 4. List of illustration .. 271
 5. List of �gures .. 272

REFERENCES 276

ABBREVIATIONS

BMZ Federal Ministry for Economic Cooperation and Development
DPP Development Partnerships with the Private Sector
DVET Directorate of Vocational Education and Training
GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH
I 4.0 Industry 4.0
LILAMA 2 LILAMA 2 International Technology College
TVET Technical and Vocational Education and Training

8

Illustration 1: Realistic microchip processor

9 DPP - Integrating requirements of Industry 4.0 in TVET

A. TRAINING MODULE

(According circular No. 03/2017 / TT-BLĐTBXH March 1, 2017 of the Ministry

of Labour, Invalids and Social Affairs)

Module name:Industry 4.0 - Programming of Mechatronic Systems

Module code: MD I 4.0 - Programming

Scheduled time: 320 hours

Theory: 80h

Practice/Laboratory/Discussion/Assignments: 220h

Examinations / Assessments: 20h

I. Module classification and characteristics:

Classification:

- Training module for higher Industry 4.0 qualification – International

College Level. Admission requirement: National College Diploma in

electronics or mechatronics occupations or 3 years proven professional

work experience in the field and industry.

Characteristics:

- The module orients on German training and examination standard. It

mediates digtalisation topics and advanced Industry 4.0 competencies as

higher qualification in the fields of electronics, automation and

mechatronics. The module is structured in 4 training units that contents

build up on each other’s. It can be offered as supplementary training

module for for college graduades of initial training programmes as well as

offered to the industry in hybrid short-term trainings for technicians,

engineers and in-company trainers.

- The trainees learn professional I 4.0 terminology acquire knowledge skills

on programming in the industry 4.0 environment - an ever-increasing

networking of industrial plants and an ever-increasing urge to store and

display production and environmental data in a meaningful way. The

trainees learn to implement consequential duties and tasks of electronic

and meachatronic technicians in the future.

- Topics such as data acquisition, programming of software modules with

object-oriented languages are dealt with in detail. The trainees learn

various possibilities to create measurement and control programs with

10 DPP - Integrating requirements of Industry 4.0 in TVET

microcontroller. They integrate the programmes into an I4.0 environment.

They learn different possibilities to store data in databases, to evaluate

and to visualize data in dashboards for knowledge processing. Aspects

of correct software documentation as well as the creation of requirements

and specifications, the correct design of databases and data security

aspects are considered.

- After completing this module, the trainees will be able to identify possible

applications for Industry 4.0, to work out proposals for solutions and to

implement them. They will be able to form an interface between software

development and production and to link both worlds synergetically.

II. Module objectives:

Knowledge: The trainees know and are familiar with:

- The historical developments in the field of digitization

- The definitions of the most important terms in the field of digitization /

industry 4.0

- The clear distinction between Industry 3.0 and Industry 4.0

- Different application scenarios for Cyber-Physical Systems

- New IT-relevant object-oriented programming languages

- The structure and content of requirement and functional specifications

- Methodical approaches to testing and documenting software modules

- The dangers and risks for networked systems and adequate security

measures

- Relational database systems and learn a database language

- The handling and application areas of microcontrollers in the I4.0

environment

- Options for data storage and retention as well as for the visualization and

presentation of system-relevant measured variables in dashboards

Skills: The trainees are able to:

- Analyse technical systems and equipment and identify potential for data

acquisition and the integration of additional sensor technology

- Build, modify and test networked systems

- Operate networked systems and carry out maintenance and optimization

work

- Analyse a technical problem and develop a solution taking into account

the prevailing conditions.

- Adapt and document software modules and integrate them into existing

systems

11 DPP - Integrating requirements of Industry 4.0 in TVET

- Design test plans and test the modified software modules under operating

conditions

- Carry out systematic error/fault analyses and prepare comprehensive

documentation of the entire procedure

- Integrate technical security measures into IT systems, inform the users

of these systems about the correct behaviour and log the measures

carried out in accordance with operational and legal requirements.

- Check the effectiveness of the implemented security measures, monitor

compliance with data protection regulations and report security-relevant

incidents

- Develop and implement data backup concepts

- Select the right procedures to suit the situation and complete software

tests before deployment in the production system

- Create possibilities for process and data monitoring in compliance with

company security guidelines

- Use ready-made software libraries and modify them according to the

situation, while adhering to the operational guidelines of software

versioning

Autonomy and responsibility: The trainees are able to:

- Inform themselves independently about emerging technologies and

acquire the knowledge necessary for application in an industrial context.

- Search for freely available and operational software libraries and to adapt

them to the given tasks

- Identify possible uses for Industry 4.0 applications in their companies, to

work out proposals for solutions and to implement them

12 DPP - Integrating requirements of Industry 4.0 in TVET

III. Module Content:

1. General content classification and time allocation:

Nr. Modular Training Units

Scheduled time (hours)

Total Theorie

Practice/

Laboratory/

Discussion/

Assignments

Examination/

Assessment

1

1. Object Oriented Programming

1.1. Programming basics

1.2. Unified Modeling Language (UML)

1.3. Aanalysing tasks and finding

solutions

1.4. Test and rollout of Software

1.5. Practice your English

80 20 55 5

2

2. Microcontroller Programming

1.1. Microcontroller programming basics

1.2. Microcontroller programming and

hardware control

1.3. Create measuring programs

1.4. Communication methods and data

exchange

1.5. Practice your English

80 20 55 5

3

3. Database Systems

1.1. Database systems basics

1.2. Handling of databases on server

level

1.3. Userprogram with databases

1.4. Practice your English

80 20 55 5

4

4. Data visualization with Dashboards

1.1. Dashboards basics

1.2. Possiblitiess for data visualization

1.3. Create and deploy dashboards

1.4. Practice your English

80 20 55 5

 Total hours: 320 80 220 20

13 DPP - Integrating requirements of Industry 4.0 in TVET

2. Detailed content

Training Unit 1:

Object-Oriented ProgrammingTime: 80 hours

Objective: The trainees:

- Know the difference between procedural and object-oriented

programming

- Know the most important terms of object-oriented programming

- Have learned an object-oriented programming language

- Can use libraries and adapt ready-made classes to their needs

- Are able to analyse a technical problem and develop a solution taking

into account the prevailing conditions.

- Are able to adapt and document software modules and integrate them

into existing systems.

- Design test plans and test the modified software modules under operating

conditions

- Carry out systematic error/fault analyses and prepare comprehensive

documentation of the entire procedure

Content:

1.1.Programming Basics

1.1.1.Fundamentals of programming

1.1.1.1. Basic programming terms

1.1.1.2. Basics of pocederal programming

1.1.1.3. Introduction to Variables, Arrays, Conditions, Loops and

Functions

1.1.1.4. Difference between IEC61131 and standard programming

languages

1.1.1.5. Getting to know Integrated Development Environments (IDE)

1.1.1.6. Software documentation and comments

1.1.2.Adapting software modules

1.1.2.1. Include modules from predefined or external libraries

1.1.2.2. Understanding the program code

1.1.2.3. Documentation and commenting of program codes

1.1.2.4. Understanding the mechanism function call and modular

programming

1.1.2.5. Interpretation of function documentation and transfer

parameters

1.1.3.Basics of object-oriented programming

1.1.3.1. Procedural programming vs. object-oriented programming

14 DPP - Integrating requirements of Industry 4.0 in TVET

1.1.3.2. Difference between classes and objects

1.1.3.3. Security aspect access rights for classes

1.1.3.4. Creation of constructor/structure for classes

1.1.3.5. Creating base classes for inheritance

1.1.3.6. Understanding inheritance structures and mechanisms

1.1.3.7. Use of the most important object-oriented structures

1.1.3.8. Installation and use of libraries

1.1.4.Extended concepts

1.1.4.1. Implementation of file input and output using object-oriented

structures

1.1.4.2. Preparation and local visualization of data using object-

oriented methods

1.1.4.3. Creation of graphical user interfaces

1.2.Unified Modeling Language (UML)

1.2.1.UML Basics

1.2.2.Class diagrams to describe software requirements and

documentation

1.2.2.1.Representation of attributes and methods

1.2.2.2.Representation of possibilities for data encapsulation

1.2.3.Display and application of class relations

1.2.3.1.Association

1.2.3.2.Aggregation

1.2.3.3.Composition

1.2.3.4.Inheritance

1.2.4.Display of inheritance trees for software documentation

1.2.5.Sequence diagrams to describe communication processes of

software (PC and mechatronic systems)

1.2.6.Use Case Diagram for high level documentation of use cases

1.2.7.Implementation of UML diagrams

1.2.7.1.Creation of classes using UML diagrams, as well as deriving

UML diagrams from existing classes

1.2.7.2.Implementation of sequence diagrams for defined tasks

1.2.7.3.Creating Use Case Diagrams for sample applications

15 DPP - Integrating requirements of Industry 4.0 in TVET

1.3.Analyse tasks and find solutions

1.3.1.Analysis of technical orders and development of solutions

1.3.1.1.Analysing customer requirements with regard to the required

function

1.3.1.2.Clarify specifications in exchange with customers

(internal/external)

1.3.1.3.Analyse processes, interfaces and environmental conditions as

well as the initial state of the systems, determine and document

requirements for software modules

1.3.1.4.Analyse and prepare data flows

1.3.1.5.Create requirement specification

1.4.Test software and rollout

1.4.1.Clarification of the V – Model

1.4.2.Draft test plan according to the operational test and release

procedure, in particular defining procedures, standard and limit values

of operating parameters and generating test data

1.4.3.Create a test plan based on requirements (specification sheet,

legal or operational specifications)

1.4.4.Simulate technical environmental conditions

1.4.5.Testing software modules

1.4.6.System tests and component tests Perform tests in the system

under operating parameters

1.4.7.Software Troubleshooting

1.4.7.1.Analysing malfunctions, systematic troubleshooting, possibly

adapting requirements and specifications with documentation

1.4.8.Documentation and Release

1.4.8.1.Basics of code and software documentation

1.4.8.2.Software versioning

1.4.8.3.Release strategies

16 DPP - Integrating requirements of Industry 4.0 in TVET

Training Unit 2:

Microcontroller Programming Time: 80hours

Objective: The trainees:

- Know the difference between using a microcontroller and a PLC

- Are able to control actuators and sensors and connect them to the

microcontroller

- Can save measured values in log files

- Are able to search and find errors in a structured way

- Are able to commission, configure and parameterize a microprocessor

- Create state machines to implement measuring programs

- Are able to integrate software modules into a sequence program

- Are familiar with the possibilities for data exchange between

microprocessors

- Know possibilities for connecting microprocessors to higher-level IT

systems

Content:

2.1.Microcontroller programming basics

2.1.1.Microcontroller Basics

2.1.2.Basic terms of programming

2.1.3.Difference between microcontroller and SPS

Operating systems for microcontrollers

2.2.Microcontroller programming and hardware control

2.2.1.Basics of microcontroller programming

2.2.1.1. Installation of necessary software packages

2.2.1.2. Programming to control microcontroller peripherals

2.2.1.3. Software architecture in the microcontroller environment

2.2.2.Hardware control

2.2.2.1. Control of external hardware (actuators and sensors)

2.2.2.2. Use of pulse width modulation for hardware control

2.2.2.3. Use of ADC (analog to digital converter) for reading analog

signals

2.2.2.4. Measurement conversion from digital value to physical

quantity

2.2.2.5. Creation of log data with sensor signals

17 DPP - Integrating requirements of Industry 4.0 in TVET

2.3.Create measuring programmes

2.3.1.Introduction to state machines

2.3.1.1. Fundamentals of state machines

2.3.1.2. Implementation of state machines for microcontrollers

2.3.1.3. Software design of a sequence program via state machines

2.3.2.Measuring programme

2.3.2.1. Implementation of a measuring program for automated

acquisition of sensor values

2.3.2.2. Creation of a program to save sensor values in log files

2.3.2.3. Extension by alarm possibility to receive an alarm if a limit

value is exceeded

2.3.2.4. Graphical representation of the log file

2.4.Communication methods and data exchange

2.4.1. HTTP Requests

2.4.1.1. Basics to webbased communication

2.4.1.2. Server-side setup of a web service for recording and

evaluating requests

2.4.1.3. Creation of client sided communication program using HTTP

requests

2.4.2. Client Server Communication

2.4.2.1. Basics to Client Server bases communication architectures

2.4.2.2. Server-side creation of a communication program for data

acquisition and data backup using web sockets

2.4.2.3. Client-side creation of a measurement and communication

program, for connection establishment and data transmission

2.4.3. Publisher Subscriber Communication

2.4.3.1. Publisher Subscriber Communication Architecture Basics

2.4.3.2. Design of communication architecture

2.4.3.3. Creating Publish and Subscriber Side Measurement and

Backup Modules

2.4.4.Implementation of a program for communication and data

exchange of two microcontrollers with provided function blocks

18 DPP - Integrating requirements of Industry 4.0 in TVET

Training Unit 3:

Database Systems Time: 80hours

Objective: The trainees:

- Have a basic understanding of databases and related system concepts

- Are able to set up and configure a database server

- Know the basic command sequences for manipulating databases

- Are able to develop programs which write measured values into

databases and read them from databases

Content:

3.1.Database systems basics

3.1.1.Basics for usage of databases

3.1.1.1.Basic concepts of databases

3.1.1.2.Necessary software components (database server)

3.1.1.3.Manual configuration of database server settings

3.1.1.4.Creation of a database under consideration of security aspects

3.1.2.Theoretical principles for databases

3.1.2.1.Structure of databases

3.1.2.2.Introduction to relational database models

3.1.2.3.Getting to know the Entity Relationship Diagram for database

design and documentation

3.2.Handling of databases on server level

3.2.1.Database manipulation

3.2.1.1.Creation of a database on a database server

3.2.1.2.Correct creation of tables and database entries for relational

databases

3.2.1.3.Getting to know the basic commands for manipulating

databases

3.2.1.4.Execution of join commands to join tables within databases

19 DPP - Integrating requirements of Industry 4.0 in TVET

3.3.Userprogram with databases

3.3.1.Database creation

3.3.1.1.Getting to know classes and functions to connect to database

servers

3.3.1.2.Creating user programs to create databases on database

servers

3.3.1.3.Implementation of user programs to store and read data on

database servers

3.3.2.Database user programme

3.3.2.1.Analyse the current state of an existing mechatronics system

and develop a concept to make the system I4.0 suitable (sensors

and actuators)

3.3.2.2.Creating a database structure via ER diagram

3.3.2.3.Creating UML Use Case, Class and Sequence diagrams to

grasp the system requirements

3.3.2.4.Implementation of a software structure using UML to link a

measuring program with a database

3.3.2.5.Programming a measuring program to store measured values

in a database

3.3.2.6.Creating an evaluation program to read out locally measured

values from a database

Illustration 2: Electronic board components

20 DPP - Integrating requirements of Industry 4.0 in TVET

Training Unit 4:

Data visualisation with dashboards Time:80 hours

Objective: The trainees:

- Learn how to handle large amounts of data

- Are able to use the right visualization method for different requirements

- Are familiar with programming dashboard applications in combination with

databases

- Can deploy dashboards in the local network and on publicly accessible

servers

Content:

4.1.Dashboards basics

4.1.1.Defining the usage and tasks of dashboards

4.1.2.Theoretical foundations for the creation of web applications

4.1.3.Comparison of different creation methods

4.1.4.Design guidelines for dashboards

4.1.5.Dashboard limitations

4.1.6.Explanation of the procedure for creating a dashboard

4.1.6.1.Comparison of prefabricated dashboard solutions to self-

implemented solutions

4.1.7.Security aspects for dashboards

4.1.7.1.Local deployment vs internet deployment

4.1.8.Installation of necessary libraries

4.1.9.Explanation of the necessary programming concepts, functions

and classes to display dashboards

4.1.10.Clarification of the necessary web-based programming

components for dashboard programming

4.2.Possiblities for data visualization

4.2.1.Fundamentals of data visualization

4.2.1.1.Display of different diagram types with application areas

4.2.1.2.Definition of the necessary data structures to use daigaramm

types

4.2.1.2.1.Continuous data vs. features

4.2.1.3.Placement of diagrams in dashboards

4.2.1.4.Conversion of data from data source to data sink in the diagram

4.2.1.4.1.Data preparation, pre-filtering, source selection

21 DPP - Integrating requirements of Industry 4.0 in TVET

4.3.Create and deploy dashboards

4.3.1.Implementation of a suitable program logic to create a dashboard

4.3.1.1.Implementation of static dashboards without data update

4.3.1.2.Implementation of dynamic dashboards with update interval

4.3.1.2.1.Considering network traffic

4.3.2.Consideration of user authentication options for security aspects

4.3.2.1.User name, passwort

4.3.3.Creating a visualization program

4.3.3.1.Creating a measurement program to store sensor data in a

database

4.3.3.2.Implementing a dashboard to continuously read and

graphically display measured values from the database

4.3.3.3.Generation of a limit value mechanism to detect exceeding of

a limit value

4.3.3.4.Generation of an Alerting Mechanism to give warnings when

limit values are exceeded

Illustration 3: Data visualizer graphic

22 DPP - Integrating requirements of Industry 4.0 in TVET

IV. Requirements for module implementation

1. Vocational classroom/ training workshop

Vocational Classroom:

- Offers barrier-free access and workplaces, complies with occupational

safety regulations, technical directions, and legal regulations.

- Provides sufficient workspace for the number of trainees as well as

operational IT infrastructure with PC workstations with appropriate

programming software and internet connection

- Training workshop:

- Workshop for electronics/mechatronics industrial project works

o Offers barrier-free access and workplaces, complies with

occupational safety regulations, technical directions, and legal

regulations.

o Provides sufficient workspace and machine workplaces for the

number of trainees

- Barrier-free toilet rooms, bathrooms, and changing rooms, separately for

women and men

2. Equipment and machinery:

- Stationary machine tools

- Analog and digital measuring tools

o Length measuring tools (/callipers)

o Angle measuring tools (yardsticks)

o Test gauges

o Bipolar voltage tester, multimeter,

o Current clamp, installation tester

- Devices

o Industrial plants (complete systems and plants for production or of

processes) such as process automation plant for the production of

fluids and substances, bottle processing systems, collection tables,

production stations, test stations

o Process engineering, manufacturing engineering, control

engineering demonstrators as well as I4.0 demonstrators,

functional and accessible for mounting microcontroller sensor

technology.

- Others

o Administrator access to PC and microcontroller to perform

necessary software installation.

23 DPP - Integrating requirements of Industry 4.0 in TVET

3. Teaching and learning materials, tools, consumption materials:

- Hand tools

- Pliers (crimping pliers, side cutters, pointed pliers, wire stripper)

- Wrench assortment(s) (hexagon/hexagon socket)

- Cable knife, scissors

- Pegboards

- Industrial components of automation technology

o Flexible assembly racks made of aluminum profiles for the

construction of subtasks in automation technology

o Pneumatic and electropneumatic components

o Hydraulic and electrohydraulic components,

o Electrical drives such as three-phase asynchronous motor, servo

motor, stepper motor

o PLC compact units (networkable and with AI/AO), modular PLC

(networkable and with AI/AO), power supply units depending on

load sizes

o PLC modules and network materials for ASi and PROFI bus,

PROFINET and Ethernet, if necessary, also addressing devices

o Router and IOT gateways for connection to industry 4.0

o Powerful notebook or desktop PC, user software for drawing and

simulation, PLC software

o Microcontroller with operating system, W - Lan module,

alternatively also network connection, periphery to control

actuators or read in sensors, power connection

o Microcontroller capable actuators, compatible in voltage range,

power stages

o Microcontroller suitable analog sensors, voltage range must be

compatible, different types for implementing example application,

at least temperature, distance, humidity, acceleration

o Network components to connect the microcontroller and IT

infrastructure (functional network cables, Wlan routers, or lan

switches, servers)

o Power supply for microcontrollers and actuators adapted to the

respective specified performance data

- Auxiliary materials

o auxiliary and operating materials for the wokassignment and

maintenance work in accordance with the practical exercises and

work orders, including tests

24 DPP - Integrating requirements of Industry 4.0 in TVET

- Consumtion materials

o consumables for the work assignment according to the practical

exercises and work orders, including tests

o Connection cable for microcontroller and production engineering

- Protective equipment

o Personal safety equipment (PSA)

o work safety clothes, safety shoes, visual cover, hearing protection

- Technical literature and table books

o Handbook and textbook Mechatronics, Handbook Informatics

- Technical documentation

o Partial, group and general drawings, layout plans

o Installation descriptions, maintenance plans, functional

descriptions

o Circuit diagrams, wiring diagrams, work plans

o nominal value tables, measurement reports, evaluation reports

- Software

o User software for drawing and simulation,

o PLC software (TIA-Portal or Step 7)

o Simulation Software - Automation Technology

o Learning software for self-study

o Object-oriented programming language (e.g. Python)

o Necessary libraries

o Software for creating SSH connections to microcontrollers (e.g.

Putty)

o Integrated Development Environment THE compatible

programming language

o Relational Database Language

o Relational database management system (e.g. MySql)

o Web server (e.g. XAMPP)

o Software or libraries for creating dashboard applications (e.g. Dash

and Things board)

4. Other requirements and conditions: None

25 DPP - Integrating requirements of Industry 4.0 in TVET

V. Assessment content and methodology

1. Content:

- Knowledge:

o To know and observe legal and operational guidelines for quality

assurance as well as data protection and IT security when working

with and in digital systems - To describe Industry 4.0 and the

digitization of production processes as well as data protection and

IT security in manufacturing

o Automation of machine tools and production systems.

o To know flexible manufacturing plants and systems as well as

handling systems and robots for flexible manufacturing plants and

to assign them to the intended purpose

o To Analyse information necessary for order processing, also from

digital media and in English

o Describe business requirements and goals of production and

calculate operational parameters

o to Analyse influences on the production process and to take them

into account in the planning

o Linking the knowledge of manufacturing and process plants with

I4.0 knowledge for connecting and extracting process data

- Skills

o to plan production orders customer-specifically as well as to

consider technological, business, environmental and safety

aspects and IT security

o maintain, Analyse, save and archive data

o to know and use assistance, simulation, diagnosis and

visualization systems

o Set up manufacturing processes with conventional and numerically

controlled machine tools and/or manufacturing systems Machine

tools

o to monitor, control and optimize manufacturing processes - to

guarantee series production readiness of manufacturing processes

o to detect and eliminate disturbances and errors in the production

process

o to apply operational and customer-specific quality assurance

systems

o to systematically search for and eliminate the causes of quality

defects

26 DPP - Integrating requirements of Industry 4.0 in TVET

o document production processes, quality inspection and faults/

malfunctions

o Contribute to the continuous improvement of work processes in the

operating procedure

o prepare products and protocols and hand them over to external

customers or to the subsequent production area (internal

customer)

- Autonomy and responsibility:

o to observe and apply general regulations of occupational safety,

health, fire and environmental protection (observation, checklist

with 90% correct answers)

o to Analyse work orders of internal and external customers and to

assess the technical and economic feasibility in compliance with

safety and environmental protection regulations

o take into account customer-specific requirements and deadlines

and arrange for partial orders

o to research and evaluate information for job planning in digital

networks

o initiate, monitor and control partial orders

o to hand over products to external customers or to the subsequent

production area (internal customer) and to present work results

also with the help of digital media

o To assume responsibility in the manufacturing process and to be

aware of product liability in the context of business relations with

customers.

o To communicate and cooperate in interdisciplinary teams

o to use energy and material under economic and environmental

aspects and to dispose of materials and substances in an

environmentally friendly way

o Ensure learning time and learning creativity (observation,

checklist). - To participate actively in the lessons (more than 80%

in theoretical and 100% in practical lessons).

27 DPP - Integrating requirements of Industry 4.0 in TVET

2. Methods

- The assessment is based on the project work carried out and products

manufactured by the trainee/learner and is carried out in accordance with

the provisions on the minimum knowledge and skills required for

graduates of intermediate and/or college level in the profession.

- Knowledge:

o The trainee's/learner's skills and behaviour are determined based on

oral and written tests such as quizzes, technical discussions, and

multiple-choice questions, as well as through integrated theory -

practice exercises or practical exercises during the implementation of

the teaching units of the module. The evaluations are calculated

according to the valid point rules

- Skills:

o On the basis of practical exercises, project work and company work

orders, the practical performance of the trainee/learner is assessed

with regard to the following criteria with the aid of evaluation

sheets/scales:

+ occupational safety

+ Organization of the workplace

+ Technical standards

+ Planning and implementation

+ target time

+ self-assessment

- Autonomy and responsibility:

o Following attitudes and characters of the trainees/learners are

determined and evaluated by observation over the entire training

period: work, learning and cooperation ethics, regulation and

regulation morale, diligence, conscientiousness, discipline, ability to

work in a team, punctuality, independence, sense of responsibility,

prudence, initiative, active participation in lessons and

support/motivation of others in the steering process.

28 DPP - Integrating requirements of Industry 4.0 in TVET

VI. Guidelines for professional module implementation:

1. Scope of application

- Training module for higher Industry 4.0 qualification – International

College Level. Admission requirement: National College Diploma in

electronics or mechatronics occupations or 3 years proven professional

work experience in the industry.

2. Guidelines on teaching and learning methods

- For teachers, lecturers and in-company trainers:

The responsible teachers (at theTVET institute)/in-company trainers (in

the company) observe the following guidelines for the professional

implementation of the theory lessons and practice training of the whole

module and each single training units:

o The trainees/learners shall be instructed in detail and comply with

regulations on occupational safety, health and environmental

protection as well as fire protection and security. Compliance with

the regulations must be continuously monitored by the responsible

teacher/responsible In-company trainer. The trainee/learner is to

be expressly informed and made aware of the appropriate

measures and consequences of non-compliance with the

regulations.

o The learning process and learning progress of the

trainees/learners shall be continuously monitored and regularly

evaluated, in particular the consistent compliance with

occupational safety regulations and environmental protection

conditions.

o To ensure the highest possible quality of teaching and training

through the reference to the corresponding teaching unit in the

planning and implementation of lessons.

o Within the framework of the practice training units, the necessary

work steps shall be carefully explained to the trainee/learner and

demonstrated correctly.

o The personal level of knowledge and skills shall be checked and

assessed individually for each practical teaching unit on the basis

of regular work reports drawn up by the trainee.

o The quality of teaching is increased and ensured by the increased

use of different teaching and learning methods such as the 4-step

method, project method, guiding text, self-study and group work as

well as by the efficient use of teaching and learning materials and

29 DPP - Integrating requirements of Industry 4.0 in TVET

other aids.

o The work results of the trainees/learners are to be evaluated and

discussed transparently and together with the trainees/learners by

the responsible vocational teacher or by the company trainer.

- For trainees/learners:

o The trainees/learners are instructed to:

 strictly follow the instructions of the vocational teachers or

the company trainers

 participate regularly and actively in the lessons and each

teaching unit of the training module

 observe the regulations on occupational safety and health,

fire and environmental protection

 actively contribute to environmental protection

 observe the teaching and workshop regulations

 participate attentively in class, take notes and ask questions

in case of uncertainty

 ask questions to the vocational school teachers or the

company trainers or to other trainees/learners to ask for

support with difficult tasks and to name problems

 prepare the workplace and keep it clean and tidy

 prepare, properly handle and maintain the equipment

 prepare daily and weekly work reports on the theoretical and

practical lessons of the module

3. Aspects to be considered:

- The training emphasis of the training module lays on all training units: 1,

2, 3 and 4

4. Further notes and explanations (if any)

30 DPP - Integrating requirements of Industry 4.0 in TVET

B. TRAINING UNITS

UNIT 1: OBJECT- ORIENTED PROGRAMMING

Unit 1: Object-oriented programming
Objective: The trainees:

- Know the difference between procedural and object-oriented

programming

- Know the most important terms of object-oriented programming

- Have learned an object-oriented programming language

- Can use libraries and adapt ready-made classes to their needs

- Are able to Analyse a technical problem and develop a solution taking

into account the prevailing conditions.

- Are able to adapt and document software modules and integrate them

into existing systems.

- Design test plans and test the modified software modules under operating

conditions

- Carry out systematic error/fault analyses and prepare comprehensive

documentation of the entire procedure

Content:

1. Object-oriented programming

1.1. Fundamentals of programming

a. Basic programming terms

 Algorithm

An algorithm is a set of instructions or rules designed to solve a definite problem.

The problem can be simple like adding two numbers or a complex one, such as

converting a video file from one format to another.

 Programme

A computer programme is termed as an organized collection of instructions,

which when executed perform a specific task or function. A programme is

processed by the central processing unit (CPU) of the computer before it is

executed. An example of a programme is Microsoft Word, which is a word

processing application that enables users to create and edit documents. The

browsers that we use are also programmes created to help us browse the

internet.

31 DPP - Integrating requirements of Industry 4.0 in TVET

b. Basics of procedural programming

Procedural programming is a programming paradigm, derived

from imperative programming, based on the concept of the procedure call.

Procedures (a type of routine or subroutine) simply contain a series of

computational steps to be carried out. Any given procedure might be called at

any point during a programme's execution, including by other procedures or

itself. The first major procedural programming languages appeared circa 1957–

1964, including Fortran, ALGOL, COBOL, PL/I and BASIC. Pascal and C were

published circa 1970–1972.

Computer processors provide hardware support for procedural programming

through a stack register and instructions for calling procedures and returning

from them. Hardware support for other types of programming is possible, but

no attempt was commercially successful (for example Lisp machines or Java

processors).

Chart 1: Procedural programming

c. Introduction to Variables, Arrays, Conditions, Loops and Functions

 Variables

What is a Variable in Python?

A Python variable is a reserved memory location to store values. In other words,

a variable in a python programme gives data to the computer for processing.

Every value in Python has a datatype. Different data types in Python are

Numbers, List, Tuple, Strings, Dictionary, etc.

Variables can be declared by any name or even alphabets like a, aa, abc, etc.

32 DPP - Integrating requirements of Industry 4.0 in TVET

Variable Naming Rules in Python.

Variable name should start with letter(a-zA-Z) or underscore (_).

Valid : age , _age , Age Invalid : 1age.

In variable name, no special characters allowed other than underscore (_).

Valid : age_ , _age

Invalid : age_*

Variables are case sensitive. age and Age are different, since variable names

are case sensitive.

Variable name can have numbers but not at the beginning. Example: Age1 5.

Variable name should not be a Python keyword. Keywords are also called as

reserved words. Example pass, break, continue. etc are reserved for special

meaning in Python. So, we should not declare keyword as a variable name.

How to Declare and use a Variable Let see an example. We will declare

variable "a" and print it.

a=100

print (a)

 Mathematical operations

 a = 4

 b = 3

 c = a + b = 7

 c = a - b =1

 c = a * b = 12

 c = a / b = 1.33333333

 c = a % b = 1 (modulo)

 c = a ** b = 64

 c = a // b = 1 (integer division)

 Functions

A function is a block of organized, reusable code that is used to perform a

single, related action. Functions provide better modularity for your application

and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print(), etc.

but you can also create your own functions. These functions are called user-

defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple

rules to define a function in Python.

Function blocks begin with the keyword def followed by the function name and

parentheses (()).

Any input parameters or arguments should be placed within these parentheses.

You can also define parameters inside these parentheses.

33 DPP - Integrating requirements of Industry 4.0 in TVET

The first statement of a function can be an optional statement - the

documentation string of the function or docstring.

The code block within every function starts with a colon (:) and is indented.

The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as

return None.

Syntax

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

 Conditions

Python uses boolean logic to evaluate conditions. The boolean values True

and False are returned when an expression is compared or evaluated.

Condition Change programme flow via condition

Redirects flow of code execution

Chart 2: Condition function

Programme can follow true or false path

Chart 3: Condition programming path

34 DPP - Integrating requirements of Industry 4.0 in TVET

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

 Equals: a == b

 Not Equals: a != b

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in "if

statements" and loops.

An "if statement" is written by using the if keyword.

Example

If statement:

a = 33

b = 200

if b > a:

 print("b is greater than a")

Elif

The elif keyword is pythons way of saying "if the previous conditions were not

true, then try this condition".

Example

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

Else

The else keyword catches anything which isn't caught by the preceding

conditions.

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

35 DPP - Integrating requirements of Industry 4.0 in TVET

 print("a and b are equal")

else:

 print("a is greater than b")

In this example a is greater than b, so the first condition is not true, also

the elif condition is not true, so we go to the else condition and print to screen

that "a is greater than b".

You can also have an else without the elif:

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

 Loops

Python has two primitive loop commands:

 while loops

 for loops

Example

Print i as long as i is less than 6:

i = 1

while i < 6:

 print(i)

 i += 1

The while loop requires relevant variables to be ready, in this example we need

to define an indexing variable, i, which we set to 1.

A for loop is used for iterating over a sequence (that is either a list, a tuple, a

dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and works

more like an iterator method as found in other object-orientated programming

languages.

With the for loop we can execute a set of statements, once for each item in a

list, tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

36 DPP - Integrating requirements of Industry 4.0 in TVET

 Arrays

Arrays are used to store multiple values in one single variable:

Example

Create an array containing car names:

cars = ["Ford", "Volvo", "BMW"]

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in

single variables could look like this:

car1 = "Ford"

car2 = "Volvo"

car3 = "BMW"

However, what if you want to loop through the cars and find a specific one? And

what if you had not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the

values by referring to an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number.

Example

Get the value of the first array item:

x = cars[0]

Example

Modify the value of the first array item:

cars[0] = "Toyota"

d. Difference between IEC61131 and standard programming

languages

 PLC programming vs PC programming

 PLC programming

+ Defined fixed cycle

+ Real time operating system

37 DPP - Integrating requirements of Industry 4.0 in TVET

Chart 4: Scan cycle of PLC

PLCs operate by continually scanning programmes and repeat this process

many times per second. When a PLC starts, it runs checks on the hardware

and software for faults, also called a self-test. If there are no problems, then the

PLC will start the scan cycle. The scan cycle consists of three steps: input scan,

executing programme(s), and output scan.

Input Scan: A simple way of looking at this is the PLC takes a snapshot of the

inputs and solves the logic. The PLC looks at each input card to determine if it

is ON or OFF and saves this information in a data table for use in the next step.

This makes the process faster and avoids cases where an input changes from

the start to the end of the programme.

Execute Programme (or Logic Execution): The PLC executes a programme

one instruction at a time using only the memory copy of the inputs the ladder

logic programme. For example, the programme has the first input as ON. Since

the PLC knows which inputs are ON/OFF from the previous step, it will be able

to decide whether the first output should be turned ON.

Output Scan: When the ladder scan completes, the outputs are updated using

the temporary values in memory. The PLC updates the status of the outputs

based on which inputs were ON during the first step and the results of executing

a programme during the second step. The PLC now restarts the process by

starting a self-check for faults.

 PC programming

+ No defined cycle

+ Cycle can be programmed

+ Real time depends on operating system and programme design

38 DPP - Integrating requirements of Industry 4.0 in TVET

Chart 5: Cycle and real time

e. Getting to know Integrated Development Environments (IDE)

An integrated development environment (IDE) is a software application that

provides comprehensive facilities to computer programmers for software

development. An IDE normally consists of at least a source code editor, build

automation tools and a debugger. Some IDEs, such as NetBeans and Eclipse,

contain the necessary compiler, interpreter, or both; others, such

as SharpDevelop and Lazarus, do not.

The boundary between an IDE and other parts of the broader software

development environment is not well-defined; sometimes a version control

system or various tools to simplify the construction of a graphical user

interface (GUI) are integrated. Many modern IDEs also have a class browser,

an object browser, and a class hierarchy diagram for use in object-oriented

software development.

f. Software documentation and comments

 Python 3.9

Python is a computer programming language often used to build websites and

software, automate tasks, and conduct data analysis. Python is a general

purpose language, meaning it can be used to create a variety of different

programmes and isn’t specialized for any specific problems. This versatility,

along with its beginner-friendliness, has made it one of the most-used

programming languages today. A survey conducted by industry analyst firm

RedMonk found that it was the most popular programming language among

developers in 2020.

39 DPP - Integrating requirements of Industry 4.0 in TVET

 Pycharm 3.9

Pycharm is an integrated development environment (IDE) used in computer

programming, specifically for the Python language. It is developed by

the Czech company JetBrains (formerly known as IntelliJ). It provides code

analysis, a graphical debugger, an integrated unit tester, integration

with version control systems (VCSes), and supports web development

with Django as well as data science with Anaconda.

Pycharm is cross-platform, with Windows, macOS and Linux versions. The

Community Edition is released under the Apache License, and there is also

Professional Edition with extra features – released under a proprietary license.

1.2. Adapting software modules

a. Include modules from predefined or external libraries

 Open windows system command (Type "cmd" into windows search)

Figure 1: Windows system command interface

40 DPP - Integrating requirements of Industry 4.0 in TVET

 Window should look like this:

Figure 2: Microsoft windows command window screen

 In system command type (press enter after every command):

1. pip3 install numpy

2. pip3 install matplotlib

3. pip3 install pandas

4. pip3 install scipy

5. pip3 install tk

b. Understanding the programme code

 Simple user interaction

These tasks are created for a beginner level in programming. Their intends are

to get used with a new programming language. Besides the theoretical

background knowledge already delivered in the course no additional knowledge

is necessary. The tasks are to be solved only with the help of the course material

and without the internet, unless stated differently.

- Console Output

Requirements:

The programmes task is to output the user’s family and first name, the age and

address.

The programmes output has to be displayed in the console. The data has to be

hard coded. No additional user input is required. To change the data the user

has to change the programme code.

Required output:

First name: XXX

41 DPP - Integrating requirements of Industry 4.0 in TVET

Family name: YYY

Age: DD.MM.YY

Address: XXYY

- Sulution:

firstName = "XXX"

familyName = "YYY"

Age = 23

Address = "XXXYYY"

print("First name:" + firstName)

print("Family name:" + familyName)

print("Age:" + str(Age))

print("Address:" + Address)

- Console Input

Requirements:

Update the programme from - so that user input from the console can be used

to set the name, address and age on runtime.

Additional information:

 The function input() reads in user input from console till the return

button is pressed.

 The data is stored as datatype string.

 User interaction will be marked by <<>>

Required output:

Please add first name: <<user adds in first name>>

Please add family name: <<user adds in first name>>

Please add age: <<user adds in first name>>

Please add address: <<user adds in first name>>

First name: XXX

Family name: YYY

Age: DD.MM.YY

Address: XXYY

- Solution:

firstName = input("Please add first name: ")

familyName = input("Please add family name: ")

Age = input("Please add age: ")

Address = input("Please add address: ")

print("------------------------------")

print("First name:" + firstName)

42 DPP - Integrating requirements of Industry 4.0 in TVET

print("Family name:" + familyName)

print("Age:" + Age)

print("Address:" + Address)

c. Understanding the mechanism function call and modular programming

What is a function in Python?

In Python, a function is a group of related statements that performs a specific

task.

Functions help break our programme into smaller and modular chunks. As our

programme grows larger and larger, functions make it more organized and

manageable.

Furthermore, it avoids repetition and makes the code reusable.

Syntax of Function

def function_name(parameters):

 """docstring"""

 statement(s)

Above shown is a function definition that consists of the following components.

- Keyword def that marks the start of the function header.

- A function name to uniquely identify the function. Function naming follows

the same rules of writing identifiers in Python.

- Parameters (arguments) through which we pass values to a function. They

are optional.

- A colon (:) to mark the end of the function header.

- Optional documentation string (docstring) to describe what the function

does.

- One or more valid python statements that make up the function body.

Statements must have the same indentation level (usually 4 spaces).

- An optional return statement to return a value from the function.

Example of a function

def greet(name):

 """ This function greets to the person passed in as a parameter"""

 print("Hello, " + name + ". Good morning!")

43 DPP - Integrating requirements of Industry 4.0 in TVET

How to call a function in python?

Once we have defined a function, we can call it from another function,

programme, or even the Python prompt. To call a function we simply type the

function name with appropriate parameters.

>>> greet('Paul')

Hello, Paul. Good morning!

Try running the above code in the Python programme with the function

definition to see the output.

def greet(name):

 """ This function greets to the person passed in as a parameter"""

 print("Hello, " + name + ". Good morning!")

greet('Paul')

Note: In python, the function definition should always be present before the

function call. Otherwise, we will get an error. For example,

function call

greet('Paul')

function definition

def greet(name):

 """ This function greets to the person passed in as a parameter"""

 print("Hello, " + name + ". Good morning!")

Erro: name 'greet' is not defined

The return statement

The return statement is used to exit a function and go back to the place from

where it was called.

Syntax of return

return [expression_list]

This statement can contain an expression that gets evaluated and the value is

returned. If there is no expression in the statement or the return statement itself

is not present inside a function, then the function will return the None object.

44 DPP - Integrating requirements of Industry 4.0 in TVET

For example:

>>> print(greet("May"))

Hello, May. Good morning!

None

Here, None is the returned value since greet() directly prints the name and

no return statement is used.

Example of return

def absolute_value(num):

 """ This function greets to the person passed in as a parameter"""

 if num >= 0:

 return num

 else:

 return -num

print(absolute_value(2))

print(absolute_value(-4))

Output

2

4

How Function works in Python?

45 DPP - Integrating requirements of Industry 4.0 in TVET

 Introducing Modular Programming

Modular programming is an essential tool for the modern developer. Gone are

the days when you could just throw something together and hope that it works.

To build robust systems that last, you need to understand how to organize your

programmes so that they can grow and evolve over time. Spaghetti coding is

not an option. Modular programming techniques, and in particular the use of

Python modules and packages, will give you the tools you need to succeed as

a professional in the fast changing programming landscape.

In this chapter, we will:

 Look at the fundamental aspects of modular programming

 See how Python modules and packages can be used to organize your

code

 Discover what happens when modular programming techniques are not

used

 Learn how modular programming helps you stay on top of the

development process

 Take a look at the Python standard library as an example of modular

programming

 Create a simple programme, built using modular techniques, to see how

it works in practice

Let's get started by learning about modules and how they work.

For most beginner programmers, their first Python programme is some

version of the famous Hello World programme. This programme would look

something like this:

print("Hello World!")

This one-line programme would be saved in a file on disk, typically named

something like hello.py, and it would be executed by typing the following

command into a terminal or command-line window:

python hello.py

The Python interpreter would then dutifully print out the message you have

asked it to:

Hello World!

46 DPP - Integrating requirements of Industry 4.0 in TVET

This hello.py file is called a Python source file. When you are first starting

out, putting all your programme code into a single source file is a great way of

organizing your programme. You can define functions and classes, and put

instructions at the bottom which start your programme when you run it using

the Python interpreter. Storing your programme code inside a Python source

file saves you from having to retype it each time you want to tell the Python

interpreter what to do.

As your programmes get more complicated, however, you'll find that it

becomes harder and harder to keep track of all the various functions and

classes that you define. You'll forget where you put a particular piece of code

and find it increasingly difficult to remember how all the various pieces fit

together.

Modular programming is a way of organizing programmes as they become

more complicated. You can create a Python module, a source file that

contains Python source code to do something useful, and then import this

module into your programme so that you can use it. For example, your

programme might need to keep track of various statistics about events that

take place while the programme is running. At the end, you might want to

know how many events of each type have occurred. To achieve this, you

might create a Python source file named stats.py which contains the following

Python code:

def init():

def event_occurred(event):

def get_stats():

The stats.py Python source file defines a module named stats —as you can

see, the name of the module is simply the name of the source file without

the .py suffix. Your main programme can make use of this module by

importing it and then calling the various functions that you have defined as

they are needed. The following frivolous example shows how you might use

the stats module to collect and display statistics about events:

import stats

stats.init()

stats.event_occurred("meal_eaten")

stats.event_occurred("snack_eaten")

stats.event_occurred("meal_eaten")

47 DPP - Integrating requirements of Industry 4.0 in TVET

stats.event_occurred("snack_eaten")

stats.event_occurred("meal_eaten")

stats.event_occurred("diet_started")

stats.event_occurred("meal_eaten")

stats.event_occurred("meal_eaten")

stats.event_occurred("meal_eaten")

stats.event_occurred("diet_abandoned")

stats.event_occurred("snack_eaten")

for event,num_times in stats.get_stats():

We're not interested in recording meals and snacks, of course—this is just an

example—but the important thing to notice here is how the stats module gets

imported, and then how the various functions you defined within

the stats.py file get used. For example, consider the following line of code:

stats.event_occurred("snack_eaten")

Because the event_occurred() function is defined within the stats module, you

need to include the name of the module whenever you refer to this function.

 Note

There are ways in which you can import modules so you don't need to include

the name of the module each time. We'll take a look at this in Chapter 3, Using

Modules and Packages, when we look at namespaces and how

the import command works in more detail.

As you can see, the import statement is used to load a module, and any time

you see the module name followed by a period, you can tell that the

programme is referring to something (for example, a function or class) that is

defined within that module.

Example

from math import pi

r = float(input(""))

A = r**2 * pi

print("The area of the circle is: " +str(A))

1.3 Basics of Object - Oriented Programming

a. Procedural programming vs. object-oriented programming

Object-oriented programming and procedural programming both are used to

develop the applications. Both of them are high-level programming languages.

These two are important concepts, and it is also important to know the

difference between them.

48 DPP - Integrating requirements of Industry 4.0 in TVET

S.no. On the

basis of

Procedural

Programming

Object-oriented

programming

1. Definition It is a programming

language that is derived

from structure programming

and based upon the concept

of calling procedures. It

follows a step-by-step

approach in order to break

down a task into a set of

variables and routines via a

sequence of instructions.

Object-oriented programming

is a computer programming

design philosophy or

methodology that organizes/

models software design

around data or objects rather

than functions and logic.

2. Security It is less secure than OOPs. Data hiding is possible in

object-oriented programming

due to abstraction. So, it is

more secure than procedural

programming.

3. Approach It follows a top-down

approach.

It follows a bottom-up

approach.

4. Data

movement

In procedural programming,

data moves freely within the

system from one function to

another.

In OOP, objects can move

and communicate with each

other via member functions.

5. Orientation It is structure/procedure-

oriented.

It is object-oriented.

6. Access

modifiers

There are no access

modifiers in procedural

programming.

The access modifiers in OOP

are named as private, public,

and protected.

7. Inheritance Procedural programming

does not have the concept

of inheritance.

There is a feature of

inheritance in object-oriented

programming.

8. Code

reusability

There is no code reusability

present in procedural

programming.

It offers code reusability by

using the feature of

inheritance.

49 DPP - Integrating requirements of Industry 4.0 in TVET

S.no. On the

basis of

Procedural

Programming

Object-oriented

programming

9. Overloading Overloading is not possible

in procedural programming.

In OOP, there is a concept of

function overloading and

operator overloading.

10. Importance It gives importance to

functions over data.

It gives importance to data

over functions.

11. Virtual class In procedural programming,

there are no virtual classes.

In OOP, there is an

appearance of virtual classes

in inheritance.

12. Complex

problems

It is not appropriate for

complex problems.

It is appropriate for complex

problems.

13. Data hiding There is not any proper way

for data hiding.

There is a possibility of data

hiding.

14. Programme

division

In Procedural programming,

a programme is divided into

small programmes that are

referred to as functions.

In OOP, a programme is

divided into small parts that

are referred to as objects.

15. Examples Examples of Procedural

programming include C,

Fortran, Pascal, and VB.

The examples of object-

oriented programming are -

.NET, C#, Python, Java,

VB.NET, and C++.

Table 1: Comparison of procedural programming vs. object-oriented

programming

b. Difference between classes and objects

 What is Class?

A class is an entity that determines how an object will behave and what the

object will contain. In other words, it is a blueprint or a set of instruction to

build a specific type of object. It provides initial values for member variables

and member functions or methods.

50 DPP - Integrating requirements of Industry 4.0 in TVET

 What is Object?

An object is nothing but a self-contained component that consists of methods

and properties to make a data useful. It helps you to determines the behavior

of the class.

For example, when you send a message to an object, you are asking the object

to invoke or execute one of its methods.

From a programming point of view, an object can be a data structure, a variable,

or a function that has a memory location allocated. The object is designed as

class hierarchies.

Here is the important difference between class and object:

Class Object

A class is a template for creating objects

in programme.
The object is an instance of a class.

A class is a logical entity Object is a physical entity

A class does not allocate memory space

when it is created.

Object allocates memory space whenever they

are created.

You can declare class only once.
You can create more than one object using a

class.

Example: Car. Example: Jaguar, BMW, Tesla, etc.

Class generates objects Objects provide life to the class.

Classes can’t be manipulated as they

are not available in memory.
They can be manipulated.

It doesn’t have any values which are

associated with the fields.

Each and every object has its own values,

which are associated with the fields.

You can create class using “class”

keyword.

You can create object using “new” keyword in

Java

Table 2: Comparison of Class and Object

51 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 3: Demonstration between “Class” and “Object”

 Class members

- Attributes

– Variables

– „the objects properties“

– May serve as a „memory“

- Methods

– Functions

– „defines what a object is capable of doing“

 OOP Example

Figure 4: OOP Example

52 DPP - Integrating requirements of Industry 4.0 in TVET

c. Security aspect access rights for classes

 Accessibility of class members

- Data encapsulation

- Controls access on attributes and methods

- Method of data security

- Creates defined intersections to use a class Possibilities

+ Public: : Access always possible

Private: Access from parent class and derived classes possible

- Protected: Access only possible from parent class

Chart 6: Class Possibilities

Get and set method:

• Public function

• Defined Interface

• Access private and protected members

53 DPP - Integrating requirements of Industry 4.0 in TVET

d. Creation of constructor/structure for classes

 Example of instantiate object

Example

Create a class using the given UML diagram below. All getter methods return

the corresponding attributes. Setter methods with data type void do not return

any value. The method getName shall return the full name with “First name last

name”. The method raise percentage shall return the new salary raised by the

percentage.

54 DPP - Integrating requirements of Industry 4.0 in TVET

Solution:

class Employee:

 def __init__(self, id, firstName, lastName, salary):

 self._id = id

 self._firstName = firstName

 self._lastName = lastName

 self._salary = salary

 def getID(self):

 return self._id

55 DPP - Integrating requirements of Industry 4.0 in TVET

 def getFirstName(self):

 return self._firstName

 def getLastName(self):

 return self._lastName

 def getName(self):

 return self._firstName + " " + self._lastName

 Creation of constructor/structure for classes def getSalary(self):

 return self._salary

 def setSalary(self, value):

 self._salary = value

 def getAnnualSalary(self):

 return self._salary * 12

 def raisePercentage(self, percentage):

 self._salary = self._salary * percentage / 100 + self._salary

 return self._salary

e. Creating base classes for inheritance

 Introduction

Inheritance is one of the most important aspects of Object-oriented

programming (OOP). The key to understanding Inheritance is that it provides

code re-usability. In place of writing the same code, again and again, we can

simply inherit the properties of one class into the other.

f. Understanding inheritance structures and mechanisms

- Child class inherits members from parent class

- Prevent redundant code

- Modularization

- Protected not inherited

 Inheritance Python

56 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 5: Inheritance Python

 Inheritance – Overriding

- Overriding

1. New of method from base class

2. Add functionality

3. Change functionality

4. Adaptation of methods to new class

- Creation in base class as remembrance

 Example overriding

Figure 6: Inheritance – Overriding

57 DPP - Integrating requirements of Industry 4.0 in TVET

1.4. Extended concepts

a. Implementation of file input and output using object-oriented structures

 DataIO

- Reading data from

1. Files

2. Streams

3. Save data to files

 Figure 7: Logo of pandas

- Popular library pandas

- Interne link: https://pandas.pydata.org/pandas-

docs/stable/getting_started/intro_tutorials/01_table_oriented.html

 Pandas Dataframe

- Structured like table

1. Rows

2. Columns

- Accessible via name

- Statistical Information

Figure 8: Sample of Pandas Dataframe

 Sample data frame in python

Figure 9: Sample of Python Dataframe

https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/01_table_oriented.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/01_table_oriented.html

58 DPP - Integrating requirements of Industry 4.0 in TVET

 Comma Seperated Values – CSV

- File type especially for sensor data

- Easy file format

1. Editable per hand

- Values separated via comma

1. Depends on country setting

2. German semicolon

3. American comma

4. Can be read directly in excel

 Using pandas library

- Installing pandas: pip3 install pandas

- Import pandas as class : import pandas as pd

- Using member functions: df = pd.readcsv(“filename.csv”)

- Store dataframe in variable: df.tocsv(“filename.csv”)

b. Preparation and local visualization of data using object-oriented

methods

 Matplotlib

- Library for plotting and visualizing data

- Compatible with many other libraries

- Used in many other libraries

- Website: https://matplotlib.org/tutorials/index.html

 Data visualization

- Data is displayed in figures Figure

o Defined area

o Configurable

o Contain plot

- Plot

o Diagram used to display data

59 DPP - Integrating requirements of Industry 4.0 in TVET

 Parts of figure

Figure 10: Explanation of parts of figure

 Creation of graphical user interfaces

- Installing Matplotlib: pip3 install Matplotlib

- Import pandas as class: import Matplotlib as mpl

60 DPP - Integrating requirements of Industry 4.0 in TVET

 Example

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0, 10, 100)

fig = plt.figure()

plt.plot(x, np.sin(x), '-')

plt.plot(x, np.cos(x), '--');

Figure 11: Graphical user interfaces

2. Unified Modeling Language (UML)

2.1 What is UML?

It is the general-purpose modeling language used to visualize the system. It is

a graphical language that is standard to the software industry for specifying,

visualizing, constructing, and documenting the artifacts of the software

systems, as well as for business modeling.

Benefits of UML:

Simplifies complex software design, can also implement OOPs like a concept

that is widely used.

https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

61 DPP - Integrating requirements of Industry 4.0 in TVET

It reduces thousands of words of explanation in a few graphical diagrams that

may reduce time consumption to understand.

It makes communication more clear and more real.

It helps to acquire the entire system in a view.

It becomes very much easy for the software programmer to implement the

actual demand once they have a clear picture of the problem.

Types of UML: The UML diagrams are divided into two parts: Structural UML

diagrams and Behavioral UML diagrams which are listed below:

Structural UML diagrams

Class diagram

Package diagram

Object diagram

Component diagram

Composite structure diagram

Deployment diagram

Behavioral UML diagrams

Activity diagram

Sequence diagram

Use case diagram

State diagram

Communication diagram

Interaction overview diagram

Timing diagram

2.2. Class diagrams to describe software requirements and
documentation

UML class diagrams: Class diagrams are the main building blocks of every

object-oriented method. The class diagram can be used to show the classes,

relationships, interface, association, and collaboration. UML is standardized in

class diagrams. Since classes are the building block of an application that is

based on OOPs, so as the class diagram has an appropriate structure to

represent the classes, inheritance, relationships, and everything that OOPs

have in their context. It describes various kinds of objects and the static

relationship between them.

The main purpose to use class diagrams are:

This is the only UML that can appropriately depict various aspects of the OOPs

concept.

62 DPP - Integrating requirements of Industry 4.0 in TVET

Proper design and analysis of applications can be faster and efficient.

It is the base for deployment and component diagram.

There are several software available that can be used online and offline to draw

these diagrams Like Edraw max, lucid chart, etc. There are several points to be

kept in focus while drawing the class diagram. These can be said as its syntax:

Each class is represented by a rectangle having a subdivision of three

compartments name, attributes, and operation.

There are three types of modifiers that are used to decide the visibility of

attributes and operations.

+ is used for public visibility(for everyone)

is used for protected visibility (for friend and derived)

– is used for private visibility (for only me)

Below is the example of Animal class (parent) having two child class as dog

and cat both have object d1, c1 inheriting properties of the parent class.

Chart 7: Example of inheriting properties of the parent class

63 DPP - Integrating requirements of Industry 4.0 in TVET

The class diagram is also considered as the foundation for component and

deployment diagrams. Class diagrams are not only used to visualize the static

view of the system but are also used to construct the executable code for

forward and reverse engineering of any system.

The class diagram clearly shows the mapping with object-oriented languages

such as Java, C++, etc. From practical experience, a class diagram is generally

used for construction purpose.

In a nutshell, it can be said, class diagrams are used for −

Describing the static view of the system.

Showing the collaboration among the elements of the static view.

Describing the functionalities performed by the system.

Construction of software applications using object-oriented languages.

import java.io.*;

class GFG {

public static void main(String[] args)

{

dog d1 = new dog();

d1.bark();

d1.run();

cat c1 = new cat();

c1.meww();

}

}

class Animal {

public void run()

{

String name;

String colour;

System.out.println("animal is running");

}

}

class dog extends Animal {

public void bark()

{

System.out.println("wooh!wooh! dog is barking");

}

public void run()

64 DPP - Integrating requirements of Industry 4.0 in TVET

{

System.out.println("dog is running");

}

}

class cat extends Animal {

public void meww()

{

System.out.println("meww! meww!");

}

}

The process to design class diagram: In Edraw max (or any other platform

where class diagrams can be drawn) follow the steps:

- Open a blank document in the class diagram section.

- From the library select the class diagram and click on create option.

- Prepare the model of the class on the opened template page.

- After editing according to requirement save it.

There are several diagram components that can be efficiently used while

making/editing the model. These are as follows:

- Class { name, attribute, method}

- Objects

- Interface

- Relationships {inheritance, association, generalization}

- Associations {bidirectional, unidirectional}

Class diagrams are one of the most widely used diagrams in the fields of

software engineering as well as business modeling.

2.3. Display and application of class relations

Association

An association can be labeled by placing an association name in the middle of

the association or by placing the role name either or both ends of the

association

If no association name or role name is specified, then the default association

name ‘has’ is assumed

Aggregations

Aggregation is an asscociation in which one class belongs to a collection

Example: Order has collection of orderDetails

65 DPP - Integrating requirements of Industry 4.0 in TVET

It is represented by diamond symbol placed next to the aggregate

Aggretion are special asscociations that represent a ‘has a’ or a ‘whole/part’

relationship among peers

Composition

Sometimes an aggregation relation may be a strong aggregation

The parts cannot have a life of their own

It means that if the aggregate is destroyed, then the parts also destroyed

A strong aggregation is also known as a composition

A strong aggregation is represented by a solid diamond symbol

2.4. Display of inheritance trees for software documentation

Inheritance overview: trees. To assess the size and complexity of the system,

we build an inheritance tree. We use as node size the number of instance

variables (width) and the number of methods (height), while the colour tone

represents the lines of code of the class.

Figure 12. Inheritance Overview via Tree; node width = NIV, node height =

NOM and colour = WLOC.

Interpretation. We observe a few main hierarchies with a high proportion of very

small classes. Then, using the number of methods per class as a criterium we

identify some

candidate classes for further investigation: (1) the smallest class (O) is

completely empty and (2) 13 classes are quite large (between 40 and 175

methods) (B).

66 DPP - Integrating requirements of Industry 4.0 in TVET

These 13 classes can be classified according to their po-sition in the inheritance

tree: being a leaf (D,I), being on top of a hierarchy (F,G,K), being in the middle

of the hier-

archy (A,B) or being alone (E,J,L). Large sibling classes like (H,I) and (N,M) are

good candidates for refactoring analysis because some of the code may be

moved up in their

common superclass. An example of possible further investigation is the large

class called BrowserNavigator that implements 175 meth-ods (marked B)

whereas its superclass Navigator (A) al-ready implements 70 methods. Another

interesting case is

the class called BRScanner (named L), which implements 49 methods and

defines 14 instance variables

2.5. Sequence diagrams to describe communication processes of
software (PC and mechatronic systems)

Sequence Diagrams –A sequence diagram simply depicts interaction between

objects in a sequential order i.e. the order in which these interactions take place.

We can also use the terms event diagrams or event scenarios to refer to a

sequence diagram. Sequence diagrams describe how and in what order the

objects in a system function. These diagrams are widely used by businessmen

and software developers to document and understand requirements for new

and existing systems.

Sequence Diagram Notations

Actors – An actor in a UML diagram represents a type of role where it interacts

with the system and its objects. It is important to note here that an actor is

always outside the scope of the system we aim to model using the UML

diagram.

We use actors to depict various roles including human users and other external

subjects. We represent an actor in a UML diagram using a stick person notation.

We can have multiple actors in a sequence diagram.

For example – Here the user in seat reservation system is shown as an actor

where it exists outside the system and is not a part of the system

Lifelines – A lifeline is a named element which depicts an individual participant

in a sequence diagram. So basically each instance in a sequence diagram is

represented by a lifeline. Lifeline elements are located at the top in a sequence

diagram. The standard in UML for naming a lifeline follows the following format

– Instance Name: Class Name

67 DPP - Integrating requirements of Industry 4.0 in TVET

We display a lifeline in a rectangle called head with its name and type. The head

is located on top of a vertical dashed line (referred to as the stem) as shown

above. If we want to model an unnamed instance, we follow the same pattern

except now the portion of lifeline’s name is left blank.

Difference between a lifeline and an actor – A lifeline always portrays an object

internal to the system whereas actors are used to depict objects external to the

system. The following is an example of a sequence diagram:

Messages – Communication between objects is depicted using messages. The

messages appear in a sequential order on the lifeline. We represent messages

using arrows. Lifelines and messages form the core of a sequence diagram.

Asynchronous Messages

Delete Message

Self Message.

Reply Message.

Found Message

Lost Message.

Guards – To model conditions we use guards in UML. They are used when we

need to restrict the flow of messages on the pretext of a condition being met.

Guards play an important role in letting software developers know the

constraints attached to a system or a particular process.

Uses of sequence diagrams –

Used to model and visualise the logic behind a sophisticated function, operation

or procedure.

They are also used to show details of UML use case diagrams.

Used to understand the detailed functionality of current or future systems.

Visualise how messages and tasks move between objects or components in a

system.

2.6. Use Case Diagram for high level documentation of use cases

Use case diagram is a behavioral UML diagram type and frequently used to

Analyse various systems. They enable you to visualize the different types of

roles in a system and how those roles interact with the system. This use case

diagram tutorial will cover the following topics and help you create use cases

better.

Importance of Use Case Diagrams

As mentioned before use case diagrams are used to gather a usage

requirement of a system. Depending on your requirement you can use that data

https://creately.com/blog/diagrams/uml-diagram-types-examples/
https://creately.com/diagram-type/use-case
https://creately.com/diagram-type/use-case
https://creately.com/diagram-type/use-case
https://creately.com/diagram-type/use-case
https://creately.com/lp/online-use-case-diagram-tool/
https://creately.com/lp/online-use-case-diagram-tool/

68 DPP - Integrating requirements of Industry 4.0 in TVET

in different ways. Below are few ways to use them.

To identify functions and how roles interact with them – The primary purpose of

use case diagrams.

For a high-level view of the system – Especially useful when presenting to

managers or stakeholders. You can highlight the roles that interact with the

system and the functionality provided by the system without going deep into

inner workings of the system.

To identify internal and external factors – This might sound simple but in large

complex projects a system can be identified as an external role in another use

case.

Use Case Diagram objects

Use case diagrams consist of 4 objects.

Actor

Use case

System

Package

The objects are further explained below.

Actor

Actor in a use case diagram is any entity that performs a

role in one given system. This could be a person,

organization or an external system and usually drawn like

skeleton shown below.

Use Case

A use case represents a function or an action within the

system. It’s drawn as an oval and named with the function.

System

The system is used to define the scope of the use case and

drawn as a rectangle. This an optional element but useful

when you’re visualizing large systems. For example, you

can create all the use cases and then use the system object

to define the scope covered by your project. Or you can

even use it to show the different areas covered in different

releases.

69 DPP - Integrating requirements of Industry 4.0 in TVET

Package

The package is another optional element that

is extremely useful in complex diagrams.

Similar to class diagrams, packages are used

to group together use cases. They are drawn

like the image shown below.

2.7. Implementation of UML diagrams

2.7.1 Creation of classes using UML diagrams

Up to now, you’ve learned about objects, relationships and guidelines that are

critical when drawing use case diagrams. I’ll explain the

various processes using a banking system as an example.

Identifying Actors

Actors are external entities that interact with your system. It can be a person,

another system or an organization. In a banking system, the most obvious actor

is the customer. Other actors can be bank employee or cashier depending on

the role you’re trying to show in the use case. An example of an external

organization can be the tax authority or the central bank. The loan processor is

a good example of an external system associated as an actor.

Identifying Use Cases

Now it’s time to identify the use cases. A good way to do this is to identify what

the actors need from the system. In a banking system, a customer will need to

open accounts, deposit and withdraw funds, request check books and similar

functions. So all of these can be considered as use cases.

Top level use cases should always provide a complete function required by an

actor. You can extend or include use cases depending on the complexity of the

system.

Once you identify the actors and the top level use case you have a basic idea

of the system. Now you can fine tune it and add extra layers of detail to it.

Look for Common Functionality to use Include

Look for common functionality that can be reused across the system. If you find

two or more use cases that share common functionality you can extract the

common functions and add it to a separate use case. Then you can connect it

via the include relationship to show that it’s always called when the original use

case is executed. (see the diagram for an example).

https://creately.com/diagram-type/class-diagram
https://creately.com/lp/interrelationship-diagram
https://creately.com/lp/online-use-case-diagram-tool/
https://creately.com/lp/process-mapping-software
https://creately.com/lp/online-use-case-diagram-tool/
https://creately.com/lp/online-use-case-diagram-tool/
https://d3n817fwly711g.cloudfront.net/blog/wp-content/uploads/2014/03/Package1.png

70 DPP - Integrating requirements of Industry 4.0 in TVET

Is it Possible to Generalize Actors and Use Cases

There may be instances where actors are associated with similar use cases

while triggering a few use cases unique only to them. In such instances, you

can generalize the actor to show the inheritance of functions. You can do a

similar thing for use case as well.

One of the best examples of this is “Make Payment” use case in a payment

system. You can further generalize it to “Pay by Credit Card”, “Pay by Cash”,

“Pay by Check” etc. All of them have the attributes and the functionality of

payment with special scenarios unique to them.

Optional Functions or Additional Functions

There are some functions that are triggered optionally. In such cases, you can

use the extend relationship and attach an extension rule to it. In the below

banking system example “Calculate Bonus” is optional and only triggers when

a certain condition is matched.

Extend doesn’t always mean it’s optional. Sometimes the use case connected

by extending can supplement the base use case. The thing to remember is that

the base use case should be able to perform a function on its own even if the

extending use case is not called.

2.7.2. Implementation of sequence diagrams for defined tasks

A sequence diagram is structured in such a way that it represents a timeline

which begins at the top and descends gradually to mark the sequence of

interactions. Each object has a column and the messages exchanged between

them are represented by arrows.

A Quick Overview of the Various Parts of a Sequence Diagram

Lifeline Notation

A sequence diagram is made up of several of these lifeline notations that should

be arranged horizontally across the top of the diagram. No two lifeline notations

should overlap each other. They represent the different objects or parts that

interact with each other in the system during the sequence.

Activation Bars

Activation bar is the box placed on the lifeline. It is used to indicate that an

object is active (or instantiated) during an interaction between two objects. The

length of the rectangle indicates the duration of the objects staying active.

https://creately.com/lp/interrelationship-diagram

71 DPP - Integrating requirements of Industry 4.0 in TVET

Message Arrows

An arrow from the Message Caller to the Message Receiver specifies a

message in a sequence diagram. A message can flow in any direction; from

left to right, right to left or back to the Message Caller itself. While you can

describe the message being sent from one object to the other on the arrow, with

different arrowheads you can indicate the type of message being sent or

received

Synchronous message

Asynchronous message

Return message

Participant creation message

Participant destruction message

Reflexive message

Illustration 4: electronic control board element

72 DPP - Integrating requirements of Industry 4.0 in TVET

2.7.3 Creating Use Case Diagrams for sample applications

Figure 13: ATM machine system illustration

We’ve gone ahead and created use case diagram templates for some common

scenarios. Although your problem or scenario won’t be exactly like this you can

use them as a starting point.

73 DPP - Integrating requirements of Industry 4.0 in TVET

3. Analyse tasks and find solutions

Analysis of technical orders and development of solutions:

Analysing customer requirements with regard to the required function, Clarify

specifications in exchange with customers.

Example: QR Code Generation using Python

QR code stands for Quick Response Code. QR codes may look simple but they

are capable of storing lots of data. Irrespective of how much data they contain

when scanned QR code allows the user to access information instantly. That is

why they are called Quick Response Code.

These are being used in many scenarios these days. It first appeared in Japan

in 1994. QR codes can be used to store(encode) lots of data and that too of

various types. For example, they can be used to encode:

i. Contact details

ii. Facebook ids, Instagram ids, Twitter ids, WhatsApp ids, and more.

iii. Event Details

iv. Youtube links

v. Product details

vi. Link directly to download an app on the Apple App Store or Google

Play.

vii. They are also being used in doing digital transactions by simply

scanning QR codes.

viii.Access Wi-Fi by storing encryption details such as SSID, password,

and encryption type.

This list goes on….!

We just saw some advantages of QR codes. Now we will learn here how we

can generate QR codes in Python.

For QR code generation using python, we are going to use a python module

called QRcode.

Link: https://pypi.org/project/qrcode/

Install it using this command: pip install qrcode

We will generate a QR Code for encoding the youtube link and we will also

explore more. QR code generation is simple. Just pass the text, link, or any

content to ‘make’ function of QRcode module.

import qrcode

img = qrcode.make("https://www.youtube.com/")

img.save("youtubeQR.jpg")

74 DPP - Integrating requirements of Industry 4.0 in TVET

On executing this code output is:

You can scan it and verify.

You can see it’s just 3 lines of code to generate this QR Code. One more thing

to mention is that it’s not necessary that you always have to give a link to

qrcode.make() function. You can provide simple text also.

For example:

You can encode: India is a country with many religions. I love India.

Let’s try it out:

import qrcode

img = qrcode.make("India is a country with many religions. I love India.")

img.save("youtubeQR.jpg")

Output QR Code for this text is:

Scan it from your mobile and you will get the content.

So this is the one part, which involves generating a QR Code and scanning it.

But what if we want to read this QR Code i.e., now we want to know what was

encoded in the QR Code without scanning it. For this, we will use OpenCV.

OpenCV is a library of programming functions focused on real-time computer

vision tasks.

75 DPP - Integrating requirements of Industry 4.0 in TVET

Install opencv: pip install opencv-python

Code to decode a QR code back to know the original string.

import cv2

d = cv2.QRCodeDetector()

val, _, _ = d.detectAndDecode(cv2.imread("myQRCode.jpg"))

print("Decoded text is: ", val)

Output:

India is a country with many religions. I love India.

4. Test software and rollout

4.1. Clarification of the V – Model

V-Model also referred to as the Verification and Validation Model. In this, each

phase of SDLC must complete before the next phase starts. It follows a

sequential design process same as the waterfall model. Testing of the device

is planned in parallel with a corresponding stage of development.

Figure 14: Illustration of Verification and Validation Model

76 DPP - Integrating requirements of Industry 4.0 in TVET

Verification: It involves a static analysis method (review) done without

executing code. It is the process of evaluation of the product development

process to find whether specified requirements meet.

Validation: It involves dynamic analysis method (functional, non-functional),

testing is done by executing code. Validation is the process to classify the

software after the completion of the development process to determine whether

the software meets the customer expectations and requirements.

So V-Model contains Verification phases on one side of the Validation phases

on the other side. Verification and Validation process is joined by coding phase

in V-shape. Thus it is known as V-Model.

There are the various phases of Verification Phase of V-model:

i. Business requirement analysis: This is the first step where product

requirements understood from the customer's side. This phase contains

detailed communication to understand customer's expectations and

exact requirements.

ii. System Design: In this stage system engineers Analyse and interpret

the business of the proposed system by studying the user requirements

document.

iii. Architecture Design: The baseline in selecting the architecture is that it

should understand all which typically consists of the list of modules, brief

functionality of each module, their interface relationships, dependencies,

database tables, architecture diagrams, technology detail, etc. The

integration testing model is carried out in a particular phase.

iv. Module Design: In the module design phase, the system breaks down

into small modules. The detailed design of the modules is specified,

which is known as Low-Level Design

v. Coding Phase: After designing, the coding phase is started. Based on

the requirements, a suitable programming language is decided. There

are some guidelines and standards for coding. Before checking in the

repository, the final build is optimized for better performance, and the

code goes through many code reviews to check the performance.

There are the various phases of Validation Phase of V-model:

i. Unit Testing: In the V-Model, Unit Test Plans (UTPs) are developed

during the module design phase. These UTPs are executed to eliminate

errors at code level or unit level. A unit is the smallest entity which can

independently exist, e.g., a programme module. Unit testing verifies that

the smallest entity can function correctly when isolated from the rest of

the codes/ units.

77 DPP - Integrating requirements of Industry 4.0 in TVET

ii. Integration Testing: Integration Test Plans are developed during the

Architectural Design Phase. These tests verify that groups created and

tested independently can coexist and communicate among themselves.

iii. System Testing: System Tests Plans are developed during System

Design Phase. Unlike Unit and Integration Test Plans, System Tests

Plans are composed by the client?s business team. System Test ensures

that expectations from an application developer are met.

iv. Acceptance Testing: Acceptance testing is related to the business

requirement analysis part. It includes testing the software product in user

atmosphere. Acceptance tests reveal the compatibility problems with the

different systems, which is available within the user atmosphere. It

conjointly discovers the non-functional problems like load and

performance defects within the real user atmosphere.

When to use V-Model?

o When the requirement is well defined and not ambiguous.

o The V-shaped model should be used for small to medium-sized projects

where requirements are clearly defined and fixed.

o The V-shaped model should be chosen when sample technical resources

are available with essential technical expertise.

Advantage (Pros) of V-Model:

- Easy to Understand.

- Testing Methods like planning, test designing happens well before

coding.

- This saves a lot of time. Hence a higher chance of success over the

waterfall model.

- Avoids the downward flow of the defects.

- Works well for small plans where requirements are easily understood.

Disadvantage (Cons) of V-Model:

- Very rigid and least flexible.

- Not a good for a complex project.

- Software is developed during the implementation stage, so no early

prototypes of the software are produced.

- If any changes happen in the midway, then the test documents along with

the required documents, has to be updated.

78 DPP - Integrating requirements of Industry 4.0 in TVET

4.2. Software Testing

What is Software Testing
Software testing is a process of identifying the correctness of software by

considering its all attributes (Reliability, Scalability, Portability, Re-usability,

Usability) and evaluating the execution of software components to find the

software bugs or errors or defects.

Chart 8: Process of software testing

Software testing provides an independent view and objective of the software

and gives surety of fitness of the software. It involves testing of all components

under the required services to confirm that whether it is satisfying the specified

requirements or not. The process is also providing the client with information

about the quality of the software.

Testing is mandatory because it will be a dangerous situation if the software

fails any of time due to lack of testing. So, without testing software cannot be

deployed to the end user.

79 DPP - Integrating requirements of Industry 4.0 in TVET

What is Testing

Testing is a group of techniques to determine the correctness of the application

under the predefined script but, testing cannot find all the defect of application.

The main intent of testing is to detect failures of the application so that failures

can be discovered and corrected. It does not demonstrate that a product

functions properly under all conditions but only that it is not working in some

specific conditions.

Testing furnishes comparison that compares the behavior and state of software

against mechanisms because the problem can be recognized by the

mechanism. The mechanism may include past versions of the same specified

product, comparable products, and interfaces of expected purpose, relevant

standards, or other criteria but not limited up to these.

Testing includes an examination of code and also the execution of code in

various environments, conditions as well as all the examining aspects of the

code. In the current scenario of software development, a testing team may be

separate from the development team so that Information derived from testing

can be used to correct the process of software development.

The success of software depends upon acceptance of its targeted audience,

easy graphical user interface, strong functionality load test, etc. For example,

the audience of banking is totally different from the audience of a video game.

Therefore, when an organization develops a software product, it can assess

whether the software product will be beneficial to its purchasers and other

audience.

Testing Goals

• Assess, achieve and preserve quality and safety

• Find as many critical faults as possible

• Find faults as early as possible

• Avoid higher costs from late bug searching

• In practice, testing is the only way to demonstrate that the system works

80 DPP - Integrating requirements of Industry 4.0 in TVET

Type of Software testing

We have various types of testing available in the market, which are used to test

the application or the software.

With the help of below image, we can easily understand the type of software

testing:

Chart 9: Types of software testing

81 DPP - Integrating requirements of Industry 4.0 in TVET

Manual testing

The process of checking the functionality of an application as per the customer

needs without taking any help of automation tools is known as manual testing.

While performing the manual testing on any application, we do not need any

specific knowledge of any testing tool, rather than have a proper understanding

of the product so we can easily prepare the test document.

Manual testing can be further divided into three types of testing, which are as

follows:

o White box testing

o Black box testing

o Gray box testing

Figure 15: Different kinds of manual testing

82 DPP - Integrating requirements of Industry 4.0 in TVET

Automation testing

Automation testing is a process of converting any manual test cases into the

test scripts with the help of automation tools, or any programming language is

known as automation testing. With the help of automation testing, we can

enhance the speed of our test execution because here, we do not require any

human efforts. We need to write a test script and execute those scripts.

Bugs Classification

• Requirement, features, functional bugs

• Structural bugs

• Data bugs

• Coding bugs

• Interface, integration and system bugs

• Test and test design bugs

Static vs dynamic testing

• Static testing

– Checking Requirements and Code

– No execution of code

 Benefits

– Early error detection

– Reduction of later testing

– Entire team involved

 Disadvantage

– Problematic with complex interactions of system components

– Some errors can only be detected during execution

Dynamic testing

– Error detection via execution of programme

– Creation of specific test cases

 Benefits

– Execution of test object

– Interaction of system components is tested

– Additional tests, such as performance, load …

• Disadvantages

– Needs executable test object and environment

– Only programmes that will get executed are tested

– Only errors effects are detected, error causes need to be found in

a separate step (debugging)

83 DPP - Integrating requirements of Industry 4.0 in TVET

Why software testing

The High Cost of Software Defects

While it’s always valuable to find software defects, finding them early in the

development lifecycle is how organizations derive the most value from their

static analysis investment. The following chart shows cost of finding defects

relative to the Software Development Life-cycle (SDLC).

Figure 16: Illustration of high cost of software defects

In their case study, highlights the value of finding errors in the coding stage.

Leveraging static analysis enabled to find programming errors before the

software hits production, saving costs associated with retesting, recertifying,

and redeployment. Most importantly, though, early defect detection keeps in

good standing with their customers. Their proactive approach to catching as

many bugs as possible early on enables the company to quickly deliver the

high-quality software their customers have come to expect, while avoiding costs

associated with late-stage defect detection.

https://www.parasoft.com/wp-content/uploads/2020/06/g3.pdf

84 DPP - Integrating requirements of Industry 4.0 in TVET

4.3 Software test plan

What is a software test plan?

A test plan is a document that sets out the scope, approach, and schedule of

intended testing activities. The test plan may also list the resources the software

tester needs to function effectively.

The test plan usually includes the following information:

i. The overall objective of the testing effort.

ii. A detailed outline of how testing will be conducted (the test approach).

iii. The features, applications, or components to be tested.

iv. Detailed scheduling and resource allocation plans for testers and

developers throughout all stages of testing.

What are the objectives of a software test plan?

The primary objective for a test plan is to produce documentation that describes

how the tester will verify that the system works as intended. The document

should describe what needs to be tested, how it will be tested, and who’s

responsible for doing so.

By writing up a test plan, all team members can work in unison and

communicate their roles to one another. You should consider creating some

SMART objectives for your test plan.

Figure 17: Objectives of software test plan

85 DPP - Integrating requirements of Industry 4.0 in TVET

What is a test case?

A test case is documentation created by the software tester that contains

detailed information on what the test should accomplish. It’s an essential part

of recording information about testing activities and results.

Test cases are used in conjunction with test plans. A test case should include

the following information.

i. A unique name or number to identify it.

ii. The features, applications, or components covered by the test case.

iii. Specific data values required for input fields and button controls to be

tested.

iv. The predicted results of actions taken during testing (the expected

outcome).

v. A description of the actual results following each action taken during

testing (the actual outcome).

vi. An indication of whether or not the test case was successful.

vii. Any errors discovered.

What’s the importance of a test plan?

A test plan is the foundation of every testing effort. It helps set out how the

software will be checked, what specifically will be tested, and who will be

performing the test. By creating a clear test plan all team members can follow,

everyone can work together effectively.

Whether you’re building an app or developing open-source software, a test plan

is essential to delivering the final result.

A high-quality plan helps to identify risk areas, determine the order of testing

activities, and allocate resources efficiently. The test plan becomes a useful

reference document that can be referred back to throughout the product's

development cycle.

https://www.workpuls.com/blog/6-crucial-questions-startups-consider-building-an-app

86 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 18: Software testing plan

How to keep the audience in mind when creating a test plan

Before you begin creating your test plan, you’ll need to identify your intended

consumers and make sure their needs are being met. This will improve the

quality of your test plan tenfold.

Here are the main things to ensure your test plan is:

 Concise. Your test plan should be no longer than one page with bullet

points.

 Organized. Make sure all the information is logically grouped.

 Readable. The document should be easy to read, avoiding technical

language where possible.

 Flexible. Your test plan should be adaptable and not fixed in stone. You

want to create documentation that won't hold you back if new information

comes along or changes need to be made.

 Accurate. Make sure all the information you've included is accurate.

87 DPP - Integrating requirements of Industry 4.0 in TVET

How to write a test plan

This might be the first job on your software developer CV, and if that’s the case,

you may need a cheat sheet to successfully write your initial test plan.

Luckily, we have you covered. This section will provide you with 14 essential

things to include in your software test plan as part of the QA process.

1) Learn about the software

Before testing starts, it's important to learn everything you can about the

software. Ask questions about how it was developed to learn about its intended

purpose, how it works, and to garner information that might help you understand

its functionality.

By understanding your software properly, you can create test cases that are

relevant and useful for testing your product.

2) Define the scope of testing

There’s no point in creating testing documents that are longer than the product

itself. Before anything else, establish what exactly will be tested during the

process, which modules or functions need to be covered in detail, and any other

essential aspects you should know about.

3) Create test cases

One of the main tasks when developing a software testing document is creating

test cases. A test case is a document that describes the steps taken to carry

out your testing. It should include information such as:

 What needs to be tested

 How it will be tested

 Who will do the testing

 Expected results

https://www.wearedevelopers.com/magazine/quick-guide-how-to-write-a-software-developer-cv
https://www.globalapptesting.com/blog/qa-process

88 DPP - Integrating requirements of Industry 4.0 in TVET

 Here’s a simple spreadsheet for setting up test cases:

Figure 19: Test case for software

4) Develop a test strategy

The test strategy defines how you plan to implement testing. Your testers should

all be working off the same game plan, so make sure every member of the team

is aware of what they're supposed to be doing at any given time.

5) Define the test objective

Each test case should be linked to a test objective. The objective ensures every

action is relevant and contributes toward making your software more valuable

for customers. Test objectives can include things like:

 Testing known features

 Testing newly implemented features

 Performing exploratory tests

 Ensuring stability throughout the product lifecycle

6) Choose testing tools

You'll need to make sure you have the right software testing solution to perform

your testing activities. Some of these tools might be software-based, while

others may require physical resources like test machines. It's important to

choose appropriate tools for each specific job and not to rely on a one-size-fits-

all solution.

https://www.globalapptesting.com/blog/software-testing

89 DPP - Integrating requirements of Industry 4.0 in TVET

7) Find bugs early

Leave time in your planning document for 'bug fixing' sessions. These allow you

to identify problems with the software early on before they become too

problematic or expensive to fix. This makes them easier and cheaper to tackle.

Check out any app security measures, use every feature, and seek out what

doesn't work well.

8) Define your test criteria

This should be part of the test case, but it's good to break it down separately.

Test criteria are essentially your objectives broken down into smaller parts.

They include specific information about how each objective will be met, which

helps you track your testing progress.

Suspension criteria are criteria that need to be met before testing can stop. For

example, you may want to suspend testing if a certain number of bugs have

been found or if the software is unable to run due to performance issues.

Exit criteria are criteria that need to be met before testing can finish. For

example, the test case should finish once each objective has been met and all

bugs have been resolved.

9) Resource planning

In your software testing document, include a resource plan that lists the number

of people required for the testing process. This should detail what each person's

role is and any training they'll require to fulfill it effectively.

10) Plan your test environment

In your test plan, include information about the environment where testing will

take place, such as:

 Test hardware required for product testing.

 Sizing requirements for software and servers.

 Platforms supported by the product.

 Other essential information related to the environment that might affect

your testing process.

https://dzone.com/articles/security-measures-for-open-source-based-apps

90 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 20: Resource planning in project management

11) Plan test team logistics

Test management is one of the most important parts of implementing process.

If you're not able to communicate with your testers effectively, their progress

will suffer and your testing document won't be as useful as it could be.

12) Schedule & estimation

In your test plan, include a schedule that allows you to outline specific testing

milestones and deadlines. Milestones may include the initial release of the

product, internal testing sessions, public beta tests, or any other key points in

time where your team needs to focus their efforts on testing.

13) Test deliverables

Your testing document should include a list of all the deliverables required for

testing. These should be linked to the steps in your schedule so everyone

knows exactly when they need to be ready for action.

https://processbliss.com/three-tips-for-successfully-implementing-process-in-your-business/

91 DPP - Integrating requirements of Industry 4.0 in TVET

14) Test automation

If your software is particularly complex and requires a vast number of test cases,

you may want to consider software test automation.

Automating the process means testers can accomplish more in less time, which

boosts productivity and significantly reduces the overall cost of testing. You

might even be able to utilize a mobile bot to speed up testing activities.

Figure 21: Life Cycle of automation testing

https://www.globalapptesting.com/blog/everything-there-is-to-know-about-automated-testing
https://www.automationanywhere.com/company/blog/product-insights/bots-in-your-pocket-get-the-world-s-only-mobile-app-for-bots

92 DPP - Integrating requirements of Industry 4.0 in TVET

Exercise: Compare Black Box Testing vs. White Box Testing vs. Grey Box

Testing

Ind
ex

Black Box Testing White Box
Testing

Grey Box Testing

1 Knowledge of internal
working structure (Code)
is not required for this
type of testing. Only GUI
(Graphical User
Interface) is required for
test cases.

Knowledge of
internal working
structure (Coding of
software) is
necessarily required
for this type of
testing.

Partially Knowledge of
the internal working
structure is required.

2 Black Box Testing is also
known as functional
testing, data-driven
testing, and closed box
testing.

White Box Testing is
also known as
structural testing,
clear box testing,
code-based testing,
and transparent
testing.

Grey Box Testing is
also known as
translucent testing as
the tester has limited
knowledge of coding.

3 The approach towards
testing includes trial
techniques and error
guessing method
because tester does not
need knowledge of
internal coding of the
software.

White Box Testing is
proceeded by
verifying the system
boundaries and data
domains inherent in
the software as
there is no lack of
internal coding
knowledge.

If the tester has
knowledge of coding,
then it is proceeded by
validating data
domains and internal
system boundaries of
the software.

4 The testing space of
tables for inputs (inputs
to be used for creating
test cases) is pretty huge
and largest among all
testing spaces.

The testing space of
tables for inputs
(inputs to be used
for creating test
cases) is less as
compared to Black
Box testing.

The testing space of
tables for inputs
(inputs to be used for
creating test cases) is
smaller than Black
Box and White Box
testing.

93 DPP - Integrating requirements of Industry 4.0 in TVET

Ind
ex

Black Box Testing White Box
Testing

Grey Box Testing

5 It is very difficult to
discover hidden errors of
the software because
errors can be due to
internal working which is
unknown for Black Box
testing.

It is simple to
discover hidden
errors because it
can be due to
internal working
which is deeply
explored in White
Box testing.

Difficult to discover
the hidden error.
Might be found in user
level testing.

6 It is not considered for
algorithm testing.

It is well suitable and
recommended for
algorithm testing.

It is not considered for
algorithm testing.

7 Time consumption in
Black Box testing
depends upon the
availability of the
functional specifications.

White Box testing
takes a long time to
design test cases
due to lengthy code.

Test cases designing
can be done in a short
time period.

8 Tester, developer and
the end user can be the
part of testing.

Only tester and
developer can be a
part of testing; the
end user can not
involve.

Tester, developer and
the end user can be
the part of testing.

Table 3: Comparison of Black Box, White Box and Grey Box Testing

94 DPP - Integrating requirements of Industry 4.0 in TVET

UNIT 2: MICROCONTROLLER PROGRAMMING

Objective: The trainees:

- Know the difference between using a microcontroller and a PLC

- Are able to control actuators and sensors and connect them to the

microcontroller

- Can save measured values in log files

- Are able to search and find errors in a structured way

- Are able to commission, configure and parameterize a microprocessor

- Create state machines to implement measuring programmes

- Are able to integrate software modules into a sequence programme

- Are familiar with the possibilities for data exchange between

microprocessors

- Know possibilities for connecting microprocessors to higher-level IT systems

Content:

1. Microcontroller programming basics

1.1. Microcontroller Basics

a. What is a Microcontroller?

A Microcontroller is a VLSI (Very Large Scale Integration) Integrated Circuit (IC)

that contains electronic computing unit and logic unit (combinedly known as

CPU), Memory (Program Memory and Data Memory), I/O Ports (Input / Output

Ports) and few other components integrated on a single chip.

Figure 22: Illustration of Microcontroller

95 DPP - Integrating requirements of Industry 4.0 in TVET

Sometimes, a Microcontroller is also called as a Computer-on-a-Chip or a

Single-Chip-Computer. Since the Microcontroller and its supporting circuitry are

often embedded in the device it controls, a Microcontroller is also called as an

Embedded Controller.

Microcontrollers are omnipresent. If a device or an application involves

measuring, storing, calculating, controlling or displaying information, then

device contains a Microcontroller in it. Let us see some of the areas where

microcontrollers are used.

The biggest user of Microcontrollers is probably the Automobiles Industry.

Almost every car that comes out of the assembly factory contains at least one

Microcontroller for the purpose of engine control. You can find many more

Microcontrollers for controlling additional systems.

Consumer Electronics is another area which is loaded with Microcontrollers.

Microcontrollers are a part of Digital Cameras, Video Camcorders, CD and DVD

Players, Washing Machines, Ovens, etc.

Microcontrollers are also used in test and measurement equipment like

Multimeters, Oscilloscopes, Function Generators, etc. You can also find

microcontrollers near your desktop computer like Printers, Routers, Modems,

Keyboards, etc.

The above definitions of the Microcontroller might seem complicated or

confusing to newbies in Electronics or Embedded Systems but the concept will

become clear as we move forward.

First, we will see the Rise of Microcontrollers, where you can find how the

development to the Microcontroller took place.

b. Rise of Microcontrollers

Microprocessor, the invention that took the field of computation by storm. A

Microprocessor is an Integrated Circuit (IC) that contains the Central Processing

Unit (CPU). The earliest known Microprocessors are the Intel’s 4004 and the

Texas Instruments’ TMS1000.

Since then, the computational power, complexity and power consumption kept

on increasing in order to provide ultimate performance (Power Consumption

must be discussed separately due to developments such as Low Power VLSI

etc.).

96 DPP - Integrating requirements of Industry 4.0 in TVET

For a Microprocessor to work, it needs a bunch of supporting hardware that can

be found on a mother board. The hardware includes memory, ICs for peripheral

devices, etc.

In the beginning itself, the Microprocessors ability to control other electronic

equipment like Photocopiers is realized. The emphasis here is not on the

computational power of the Microprocessor but rather on a control mechanism

with less complex hardware and increased reliability.

This requirement paved way for integrating the minimum hardware required for

complete functioning of a Processor on to a single chip i.e. same chip as the

processor, to be precise.

This is the rise of Microcontrollers, an Integrated Circuit, which contains all the

functions and hardware in order to make a complete computer system. Here,

the computational power of the device is of less importance than the integration

of all the components, including memory.

c. Basics of Microcontrollers

Basically, a Microcontroller consists of the following components.

 Central Processing Unit (CPU)

 Programme Memory (ROM – Read Only Memory)

 Data Memory (RAM – Random Access Memory)

 Timers and Counters

 I/O Ports (I/O – Input/Output)

 Serial Communication Interface

 Clock Circuit (Oscillator Circuit)

 Interrupt Mechanism

Most modern Microcontrollers might contain even more peripherals like SPI

(Serial Peripheral Interface), I2C (Inter Integrated Circuit), ADC (Analog to

Digital Converter), DAC (Digital to Analog Converter), CAN (Controlled Area

Network), USB (Universal Serial Bus), and many more.

The CPU (Central Processing Unit) in a Microcontroller performs the arithmetic,

logic, math and data-oriented function, similar to CPU in the Microprocessor.

The difference between a Microprocessor and Microcontroller is that a

Microprocessor need to be interface with external memory and other I/O

Interfaces to work as a computer whereas, a Microcontroller has all the required

peripherals on the same chip as the CPU.

The integration of features like ADC, DAC etc. on the same chip as the CPU

makes it more efficient and cheaper than to use a separate ADC Chip.

https://www.electronicshub.org/basic-electronic-components/
https://www.electronicshub.org/basic-electronic-components/
https://www.electronicshub.org/basics-serial-peripheral-interface-spi/
https://www.electronicshub.org/basics-serial-peripheral-interface-spi/
https://www.electronicshub.org/analog-circuits-and-digital-circuits/
https://www.electronicshub.org/analog-circuits-and-digital-circuits/

97 DPP - Integrating requirements of Industry 4.0 in TVET

Developing a Computer Controlled System involves design of the Hardware and

also writing an efficient Software Programme. Since a Microcontroller has all

the hardware, that are required to make a computer controlled system on a

single chip, using a Microcontroller will drastically reduce the efforts and time

spent on hardware design and wiring.

d. Basic Structure of a Microcontroller

You might have seen the basic structure of a Microcontroller many times. If you

have already seen the structure of Microcontroller and the basic

components of a Microcontroller before, then consider this as a revision. If you

haven’t seen it, then it is very important to get an idea about the basic structure

of a Microcontroller.

The following image shows the Basic Structure of a Microcontroller.

Figure 23: Basic Structure of a Microcontroller

From the above image, you can understand that the three important (or major)

components of a Microcontroller are:

 The CPU (Central Processing Unit)

 The Memory and

 The I/O Ports

This doesn’t mean that other components are of less importance. But these can

be considered as supporting devices. We will now see each of the Basic

Components of a Microcontroller mentioned in the above structure.

https://www.electronicshub.org/basic-electronic-components/
https://www.electronicshub.org/basic-electronic-components/

98 DPP - Integrating requirements of Industry 4.0 in TVET

e. Advantages of Microcontrollers

 A Microcontroller is a true device that fits the computer-on-a-chip idea.

 No need for any external interfacing of basic components like Memory,

I/O Ports, etc.

 Microcontrollers doesn’t require complex operating systems as all the

instructions must be written and stored in the memory. (RTOS is an

exception).

 All the Input/Output Ports are programmable.

 Integration of all the essential components reduces the cost, design time

and area of the product (or application).



f. Disadvantages of Microcontrollers

 Microcontrollers are not known for their computation power.

 The amount of memory limits the instructions that a microcontroller can

execute.

 No Operating System and hence, all the instruction must be written.

g. Applications of Microcontrollers

There are huge number of applications of Microcontrollers. In fact, the entire

embedded systems industry is dependent on Microcontrollers. The following

are few applications of Microcontrollers.

 Front Panel Controls in devices like Oven, washing Machine etc.

 Function Generators

 Smoke and Fire Alarms

 Home Automation Systems

 Automatic Headlamp ON in Cars

 Speed Sensed Door Locking System

In this tutorial/article, we have seen the basics of Microcontrollers, Basic

Structure of a Microcontroller, different components of a Microcontroller,

advantages, disadvantages and applications of Microcontrollers.

99 DPP - Integrating requirements of Industry 4.0 in TVET

1.2. Basic terms of programming

a. What is a programming term?

Programming terms are a collection of words representing scientific and

technological concepts. Usually, they will be used in the fields of

programming and represent the exact concept of expertise.

For the most part, programming terms are not expressive and must be

approved and promulgated by the competent authority.

b. General term

 Software Engineering: Kỹ thuật phần mềm.

 HDSE (Higher Diploma in Software Engineering): Chứng Chỉ kỹ sư phần

mềm Quốc tế.

 Structured Programming: Lập trình cấu trúc .

 OOP (Object-Oriented Programming): Lập trình hướng đối tượng.

 Programmer: Lập trình viên.

 Programming: Lập trình.

 Programme: Chương trình.

 Tester: Người kiểm thử chương trình.

 Designer: Chuyên viên thiết kế.

 Developer: Người phát triển phần mềm.

 Project: Dự án.

 Project Manager (PM): Quản lý dự án.

 Coder: Người viết Code.

c. Glossary of source code

 Source code: Mã nguồn.

 Open source: Mã Nguồn mở.

 Code: Mã.

 Design: Thiết kế.

 Source file: File nguồn.

 Library: Thư viện.

 Header file: File chứa các nguyên mẫu hàm.

 Implementation File: File chứa nội dung thực thi, mã lệnh của các hàm.

d. Terminology of translation tools and programmes

 Run: Chạy chương trình.

 Debug: Gỡ rối, sửa lỗi.

 Error: Lỗi.

 Compile error: Lỗi khi dịch chương trình.

 Runtime error: Lỗi khi chạy chương trình.

100 DPP - Integrating requirements of Industry 4.0 in TVET

 Integrated-Development-Environment (IDE): Môi trường tích hợp phát

triển.

 Compiler: Trình biên dịch.

 Compile: Dịch chương trình.

 Interpreter: Trình thông dịch.

 Line: dòng.

 Editor: Trình soạn thảo.

e. Terminology when writing code

 Operator: Toán tử .

 Function: Hàm .

 Character: Ký tự .

 Digits: Chữ số .

 Argument: Đối số.

 Selection: Chọn lựa, rẽ nhánh.

 Statement: Câu lệnh .

 Declaration: Khai báo.

 Initialization: Khởi tạo.

 Definition: Định nghĩa.

 Condition: Điều kiện.

 Control structure: Cấu trúc điều khiển.

 Value: Giá trị.

 Syntax: Cú pháp.

 Function Call: Lời gọi hàm.

 Expression: Biểu thức.

 Operand: Toán hạng .

 Dynamic Variable: Biến động .

 Memory leak: Lỗi xảy ra khi con trỏ ra khỏi phạm vi khi chưa giải phóng bộ nhớ.

 Pointer: Con trỏ .

 Reference: Tham chiếu.

 Parameter: Tham số .

 Prototype: Nguyên mẫu hàm .

 Comment: Ghi chú, chú thích .

 Code block: Khối lệnh .

 Assign: Gán .

 Allocate (memory): Cấp phát bộ nhớ.

 Deallocate (memory): Giải phóng và thu hồi bộ nhớ.

 Dynamic Memory: Bộ nhớ động .

 Static Memory: Bộ nhớ tĩnh.

 Static variable: Biến tĩnh .

101 DPP - Integrating requirements of Industry 4.0 in TVET

1.3. Difference between microcontroller and PLC

Figure 24: Microcontroller and PLC

a. Architecture

PLCs Architecture:

PLCs generally can be referred to as a high-level microcontroller. They are

essentially made up of a processor module, the power supply, and the I/O

modules. The processor module consists of the central processing unit (CPU)

and memory. In addition to a microprocessor, the CPU also contains at least an

interface through which it can be programmed (USB, Ethernet or RS232) along

with communication networks. The power supply is usually a separate module,

and the I/O modules are separate from the processor. The types of I/O modules

include discrete (on/off), Analog (continuous variable), and special modules like

motion control or high-speed counters. The field devices are connected to the

I/O modules.

102 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 25: PLCs Architecture

Depending on the amount of I/Os modules possessed by the PLC, they may be

in the same enclosure as the PLC or in a separate enclosure. Certain small

PLCs called nano/micro PLCs usually have all their parts including power,

processor etc. in the same enclosure.

103 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 26: PLC hardware structure

Microcontroller’s Architecture

The architecture of PLCs described above is somewhat similar to the

microcontrollers in terms of constituents, but the microcontroller implements

everything on a single chip, from the CPU to the I/O ports and interfaces

required for communication with the outside world. Architecture of the

microcontroller is shown below.

104 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 27: Microcontroller’s Architecture

Just like the microcontroller has diverse architecture from the AVR architecture

to the 8051 architecture, PLCs likewise have variations in their design which

supports the configuration and desire of a particular manufacturer but they

generally all adhere to the industry standard (IEC 61131-3) for PLCs. This

standard fosters interoperability between modules and parts.

b. Interfaces

PLCs are standard designed to interface with industrial grade sensors,

actuators, and communication modules and are thus given current and voltage

ratings which are often incompatible with microcontrollers without extra

hardware.

PLCs usually use Ethernet, and several variations of the RS- serial series like

RS-232, RS-485 for communication. The advent of the industrial internet of

things nowadays, is creating a surge in the number of connected PLC devices

capable of transmitting data over wireless communication interfaces.

https://circuitdigest.com/internet-of-things
https://circuitdigest.com/internet-of-things

105 DPP - Integrating requirements of Industry 4.0 in TVET

As mentioned earlier, they come in different sizes, from small devices (with few

IO pins/modules) which are referred to as building blocks to large, giant rack

mounted PLCs with hundreds of IOs.

Microcontrollers as well have sensors, actuators, and modules designed to

meet their specific needs which might be difficult to interface with a PLC. They

are however usually designed to handle processing of only a few 100 IOs. While

several techniques can be explored to increase the IOs of the microcontroller,

this are still possible with PLCs and is thus not unique to the microcontrollers,

asides from the fact that it increases the entire project budget.

c. Performance, Sturdiness and Reliability

This is by far the point under which the PLC distinguishes itself the most. As

mentioned initially, the PLC was designed for use in industrial setups and was

thus fortified to be able to withstand several adverse conditions associated with

that environment like, extreme temperature ranges, electrical noise, rough

handling and high amount of vibration. PLCs are also a good example of real

time operation system due to their ability to produce outputs within the shortest

time possible after evaluating an input. This is very important in industrial

system as timing is a huge part of the manufacturing plant/process.

Microcontrollers however are less sturdy. By design they were not designed to

serve as standalone devices like PLCs. They were designed to be embedded

in a system. This provides an explanation for their less sturdy look compared to

PLCs. For these reasons, microcontrollers may fail when deployed in certain

scenarios as the chips are fragile and can easily be damaged.

d. Skill Requirement for Use

One of the key attributes of the PLC is the low technical knowledge required for

programming, and generally operating it. The PLC was designed to be use by

both the highly skilled automation experts and factory technicians who have

little or no formal training. It is relatively easy to troubleshoot and diagnose

faults. Modern PLC devices usually come with a display screen that makes

things easier to monitor without sophisticated tools.

Microcontrollers on the other hand however, require skilful handling. Designers

need to have a good knowledge of electrical engineering principles and

programming to be able to design complementary circuits for the

microcontroller. Microcontrollers also require special tools (e.g Oscilloscope) for

fault diagnosis and firmware trouble shooting. Although several simplified

106 DPP - Integrating requirements of Industry 4.0 in TVET

platforms like the Arduino currently exists, it is still a lot more complex than the

plug and play PLCs both from connection stand point, programming standpoint,

and ease of use.

e. Programming

For the sake of simplicity and ease of use by all knowledge classes, PLCs were

originally designed to be programmed using a visual of programming that

mimics the connections/schematics of relay logic diagrams. This reduced the

training requirements for existing technicians. The primary, most popular

programming language used for PLCs are the Ladder Logic and instruction list

programming language. Ladder logic uses symbols, instead of words, to

emulate the real world relay logic control, which is a relic from the PLC's

history. These symbols are interconnected by lines to indicate the flow of

current through relay, like contacts and coils. The number of symbols has

increased tremendously over the years enabling engineers to easily implement

high level of functionalities.

Figure 28: Ladder logic/diagram

An example of a ladder logic/diagram based code is shown above. It usually

looks like a ladder which is the reason behind its name. This simplified look

makes PLCs very easy to programme such that if you can analyse a schematic,

you can programme PLCs.

Due to the recent popularity of modern high level programming languages,

PLCs are now being programmed using these languages like C, C++ and basic

but all PLCs generally still adhere to the industry IEC 61131/3 control systems

standard and support the programming languages stipulated by the standard

which include; Ladder Diagram, Structured Text, Function Block Diagram,

Instruction List and Sequential Flow Chart.

107 DPP - Integrating requirements of Industry 4.0 in TVET

Modern day PLC are usually programmed via application software based on

any of the languages mentioned above, running on a PC connected to the PLC

using any of, USB, Ethernet, RS232, RS-485, RS-422, interfaces.

Microcontrollers on the other hand are programmed using low level languages

like assembly or high level languages like C and C++ among others. It usually

requires a high level of experience with the programming language being used

and a general understanding of the principles of firmware development.

Programmers usually need to understand concepts like data structures and a

deep understanding of the microcontroller architecture is required to develop a

very good firmware for the project.

Microcontrollers are usually also programmed via application software running

on a PC and they are usually connected to that PC via an additional piece of

hardware usually called a programmers.

The operation of programmes on the PLC is however very similar to that of the

microcontroller. The PLC uses a dedicated controller as a result they only

process one programme over and over again. One cycle through the

programme is called a scan and it’s similar to a microcontroller going through

a loop.

An operating cycle through the programme running on PLC is shown below.

Chart 10: Operating cycle

on PLC

108 DPP - Integrating requirements of Industry 4.0 in TVET

f. Applications

PLCs are the primary control elements used in industrial control systems. They

find application in the control of industrial machines, conveyors, robots and

other production line machineries. They are also used in SCADA based

systems and in systems that require a high level of reliability and ability to

withstand extreme conditions. They are used in industries including;

1. Continuous bottle filling system

2. Batch mixing system

3. stage air conditioning system

4. Traffic control

Microcontrollers on the other hand find application in everyday electronic

devices. They are the major building blocks of several consumer electronics

and smart devices.

2. Microcontroller programming and hardware control

2.1. Basics of microcontroller programming

2.1.1. Installation of necessary software packages

First, we need to download the zip file "raspbian-buster.zip" used to install the

Linux Raspbian operating system according to the following link

https://www.raspberrypi.org/downloads/raspbian/, to your computer count.

Next we download the balenaEtcher software for Windows operating system

according to the following link, https://www.balena.io/etcher/, to the computer.

This software is used for the purpose of copying OS Image files to the memory

card. In addition, we can also use other software to copy the OS Image file to

the memory card to help install the Linux operating system for the Raspberry Pi

embedded computer.

109 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 29: Instruction on software download

Double click on the newly downloaded file to start the installation of the

balenaEtcher software. An installation window will appear on the screen and we

click on the “I Agree” button to continue, as shown below.

Figure 30: Instruction on balenaEtcher Setup 1

110 DPP - Integrating requirements of Industry 4.0 in TVET

Wait a while for the balenaEtcher software installation to complete.

Figure 31: Instruction on balenaEtcher Setup 2

After installing the balenaEtcher software for Windows operating system on the

computer, continue, we will use this software to copy the OS Image file to the

memory card. First, start the VirtualBox software as shown in the image below.

Figure 32: Instruction on balenaEtcher Setup 3

111 DPP - Integrating requirements of Industry 4.0 in TVET

Next, insert the memory card into the reader on the computer, click the “Select

Image” button and select the OS Image file “2019-09-26-raspbian-buster.zip”

that was downloaded earlier, as shown in the illustration. under.

Figure 33: Instruction on balenaEtcher Setup 4

Next click on the “Select target” button to select the exact memory card to be

used.

Figure 34: Instruction on balenaEtcher Setup 5

112 DPP - Integrating requirements of Industry 4.0 in TVET

Finally click on the “Flash!” button. to copy the OS Image file to the memory

card. Wait a while for the process to complete.

Figure 35: Instruction on balenaEtcher Setup 6

Here are the complete steps to copy the Linux operating system to the memory

card. Next, we just need to plug this memory card into the Raspberry Pi

embedded computer and turn on the power to start the machine, continue with

some initial setup operations for the Raspberry Pi such as time zone, country,

language, username , login password, communication network connection, etc.

Figure 36: Instruction on Rasperry Pi setup 1

113 DPP - Integrating requirements of Industry 4.0 in TVET

After the initial setup is complete, we need to proceed to reboot the Raspberry

Pi and start being able to use the Linux operating system on the Raspberry Pi

embedded computer.

Install Python software on Linux operating system

To be able to open the Terminal window quickly from the GUI, we press the key

combination "Ctrl + Alt + T". Then do typing in the Linux command line to update

the latest Linux OS version and install the Python software.

To update to the latest Linux desktop version, enter the following command:

~$ sudo apt-get update

To install the Python software, enter the following command line:

~$ sudo apt-get install python

2.1.2. Programming to control microcontroller peripherals

- Event driven

• Programme on micro controller only gets executed when event happens

• Detecting trigger on interrupt pin

• Low power applications

• Time of execution usually unclear

Figure 37: Illustration of event driven

- Delay driven

• Programme on µC gets executed periodical

- With software delay no multitasking capabilitys

• Software delays still need computation time

• Pure delay driven dose not fullfill realtime requirements

114 DPP - Integrating requirements of Industry 4.0 in TVET

- Timer driven

• Progam on µC gets executed periodically

– Timer used to call task after defined period of time

• Task has to be executed within task period

– Including execution time of code

– Delay from hardware access

– Delay from communication

- Delay driven vs Timer driven

115 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 38: Comparison of Delay driven vs Timer driven

Exercise: Digital access of dual LED

Requirements:

Microcontroller libraries provide easy access to digital input and output ports. In

this task the usage of digital outputs shall be trained. In this example, a dual

colour led will be accessed via the digital output ports.

Dual colour LEDs, housed in a 3mm epoxy package, emit two light colours,

often red and green. Two-colour LEDs have 3 lines, i.e. 2 connections, and one

common cathode and common anode. The 2 connections are arranged

antiparallel in the circuit and are cathode/anode connected. Positive voltage is

applied to one of the two terminals, then it emits the corresponding light colour.

If the polarity of the voltage is reversed the other light colour will light up and

only one of the connections can be voltage received. This type of LED is often

used as indicator lights for a wide variety of devices, including televisions, digital

cameras and Remote controls.

Your task is to create a programme that follows this sequence:

1. No LED shines

2. Red LED shines green dose not shine

3. Green LED shines red dose not shine

4. Both LED shine

5. Back to 1

116 DPP - Integrating requirements of Industry 4.0 in TVET

Between every step in the sequence there shall be a delay of 1 second. The

times library will provide you with the functionality for creating a delay. You can

use any valid GPIO pin. Ensure that the software pin corresponds to the

hardware pin. To find valid pins study the GPIO modules description.

Steps:

1. Connect to your microcontroller

2. Store the corresponding hardware pin numbers in a variable

3. Setup

a. Initialize the GPIO board

b. Set the corresponding GPIO pins as output

c. Set the output state of the GPIO pins to low

4. In the main loop

a. Implement the sequence of LED from before

5. Prepare a destroy routine in case the programme execution gets

stopped

Reference solution:

Solution in pseudo code (Pin numbers depend on hardware implementation)

 redPin = Nr1

 greenPin =Nr2

 In setup function

o Set redPin and greenPin as output

o Set redPin and greenPin to state low

 In main loop

o While true

 Set redPin and greenPin to low

 Delay 1second

 Set redPin high, set greenPin low

 Delay1second

 Set redPin low, set greenPin high

 Delay 1 second

 Set redPin and greenPin to high

 Delay 1 second

117 DPP - Integrating requirements of Industry 4.0 in TVET

2.1.3. Software architecture in the microcontroller environment

Software Architecture

Architecture serves as a blueprint for a system. It provides an abstraction to

manage the system complexity and establish a communication and

coordination mechanism among components.

 It defines a structured solution to meet all the technical and operational

requirements, while optimizing the common quality attributes like

performance and security.

 Further, it involves a set of significant decisions about the organization

related to software development and each of these decisions can have

a considerable impact on quality, maintainability, performance, and the

overall success of the final product. These decisions comprise of −

o Selection of structural elements and their interfaces by which the

system is composed.

o Behavior as specified in collaborations among those elements.

o Composition of these structural and behavioral elements into large

subsystem.

o Architectural decisions align with business objectives.

o Architectural styles guide the organization.

Microcontroller Operating Systems

• Requirements:

– Possilbity to start, stop and supervice tasks

– Precice controll of calling

– Multitasking support

– Fullfill real time requirements

Real time

• Real time according to DIN 44300 Teil 9(original):

„Unter Echtzeit versteht man den Betrieb eines Rechensystems, bei dem

Programme zur Verarbeitung anfallender Daten ständig betriebsbereit sind,

derart, dass die Verarbeitungsergebnisse innerhalb einer vorgegebenen

Zeitspanne verfügbar sind. Die Daten können je nach Anwendungsfall nach

einer zeitlich zufälligen Verteilung oder zu vorherbestimmten Zeitpunkten

anfallen.“

118 DPP - Integrating requirements of Industry 4.0 in TVET

• Real time according to DIN 44300 Teil 9 (translated):

“Real-time means the operation of a computer system in which programmes for

processing accruing data are constantly operational in such a way that the

processing results are available within a specified period of time. Depending on

the application, the data can be generated according to a temporally random

distribution or at predetermined points in time.”

Real time operating systems (RTOS)

• RTOS

– Manages secure processing of requests from an application

program or the arrival of signals via hardware interfaces within a

period that can be determined in advance

– Period can be high or low depending on the applications

requirements

– Important is to finish execution within the periods duration

• Soft RTOS

– OS used when failing of execution in duration leads to problematic

system states

– Deadline has to be kept most of the times

Figure 39: Raspberry Pi4

 Hard RTOS

– OS used when failing of execution in duration leads to catastrophic

events

– Deadline always has to be kept

119 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 40: XDK sensor

Hard vs Soft RTOS

Figure 41: Illustration of Hard vs Soft RTOS

120 DPP - Integrating requirements of Industry 4.0 in TVET

Basic structure µC

Chart 11: : I/O structure of the microcontroller

121 DPP - Integrating requirements of Industry 4.0 in TVET

Functional units µC

Chart 12: Function block diagram of microcontroller

122 DPP - Integrating requirements of Industry 4.0 in TVET

Memory distribution

Chart 13: Memory distribution in microcontrollers

2.2. Hardware control

This chapter will provide tasks for basic hardware control. The real

implementation will depend on which type of hardware is available. The tasks

can be altered depending on which hardware is provided. Originally, this

exercise were designed for microcontroller, which use 3.3V output voltage. If a

microcontroller with 5V output voltage is used the basic task instructions can be

used without change, but the usage of the correct sensor and actuators which

are 5V compatible has to be ensured. Do not use 3.3V hardware on 5V

hardware and vice versa.

123 DPP - Integrating requirements of Industry 4.0 in TVET

2.2.1. Control of external hardware (actuators and sensors)

Reading in digital input

There are two main ways on how to detect changes on hardware and react to

them. The first one is via polling and the second one via interrupt.

Detection via polling

Requirements:

When a digital input is detected via polling the user needs to create a

programme where the microcontroller sequentially reads in the digital input and

detects if its set to high or low. This way of programming will cost computation

power and energy with every iteration. For simple programmes where energy

efficiency is not mandatory this technique can be used.

Create a programme that sets the dual LED to green colour if a button is not

pressed and to red colour if the button is not pressed. Use board GPIO pins to

your desire.

Steps:

1. Wire the button and the LED with the board

2. Store the corresponding hardware pin numbers in a variable

3. Setup

a. Initialize the GPIO board

b. Set the corresponding LED GPIO pins as output

c. Set the output state of the LED GPIO pins to low

d. Set the corresponding button GPIO pin as input

i. Set the internal pull up resistor to pull up

“pull_up_down=GPIO.PUD_UP”

4. Loop

a. Read in the digital input

b. Check if button was pressed

c. Implement the logic above depending on the result

124 DPP - Integrating requirements of Industry 4.0 in TVET

Reference solution:

Solution in pseudo code (Pin numbers depend on hardware implementation)

 redPin = Nr1

 greenPin =Nr2

 btnPin = Nr3

 In setup function

o Set redPin and greenPin as output

o Set redPin and greenPin to state low

o Set btnPin as input and activate the pullup resistor

 In main loop

o While true

 btnVal = digitalRead(btnPin)

 if btnVal == pressed

 set redPin to high

 set greenPin to low

 else

 set redPin to low

 set greenPin to high

 delay 100ms

Detection via interrupt

Requirements:

When a digital input is detected via interrupt then it’s not necessary to manually

call the read in function. Instead, an interrupt function is created that listens to

a rising or a falling edge (depending in implementation) on the corresponding

pin. If the state changes then the interrupt function will call a callback function

to be executed. This style of programming permits very power and computation

efficient programming.

Upgrade the programme from detecion via polling for reading in via interrupt.

Use the “GPIO.add_event_detect(PINNr, GPIO.BOTH, callback=detect,

bouncetime=200)”. The bouncetime is set to 200 to avoid getting wrong

interrupt calls by the buttons bouncing.

The interrupts callback function is called detect. This function shall implement

the same detection logic as detecion via polling.

125 DPP - Integrating requirements of Industry 4.0 in TVET

Steps:

1. Wire the button and the LED with the board

2. Store the corresponding hardware pin numbers in a variable

3. Setup

a. Initialize the GPIO board

b. Set the corresponding LED GPIO pins as output

c. Set the output state of the LED GPIO pins to low

d. Set the corresponding button GPIO pin as input

i. Set the internall pull up resistor to pull up

“pull_up_down=GPIO.PUD_UP”

e. Set the interrupt detection function according to above

requirements

4. Outside of setup

a. Create a function “detect”

i. Read in the digital input

ii. Check if button was pressed

iii. Implement the logic above depending on the result

5. Loop

a. Create a while true loop

i. Do nothing in the loop “pass”

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

 redPin = Nr1

 greenPin =Nr2

 btnPin = Nr3

 In setup function

o Set redPin and greenPin as output

o Set redPin and greenPin to state low

o Set btnPin as input and activate the pullup resistor

o Create interrupt service routine, attach function detect set bounce

time to 200ms, activate falling and rising edge detection

126 DPP - Integrating requirements of Industry 4.0 in TVET

 In function detect

o btnVal = analogeRead(btnPin)

 if btnVal == pressed

 set redPin to high

 set greenPin to low

 else

 set redPin to low

 set greenPin to high

 In main loop

o While true

 pass

2.2.2. Use of pulse width modulation for hardware control

Requirements:

Pulse width modulation is a very common method to for example dim light or

control engines speed. In this task a RGB LED shall be used. RGB LED emits

light in different colours. In its transparent or semi-transparent plastic housing,

with four pins, it is equipped with three LEDs: red, green and blue. With different

luminance’s, the three primary colours mix to different colours and by controlling

the circuit, you can make the RGB LED emit colourful light.

Create a programme the sets the RGB LED to 10 different colour patterns. Let

the led switch between the patterns with 300ms delay. Figure displays the RGB

colour spectrum here you can take it as a refence to decide which colours you

like to choose.

Figure 42: Pulse width modulation

127 DPP - Integrating requirements of Industry 4.0 in TVET

Usually, RGB is defined between 0 and 255 for each colour. Depending on the

used library it is possible that the PWM either gets 0 to 100 where 0 means no

Pulse and 100 means full dc output, or 0 and 255, where 0 means no pulse

and 255 means 100% output. Consider to research which type of input for the

PWM of your microcontroller is needed. If possible, use 2000hz as PWM

frequency.

Steps:

1. Wire RGB LED to microcontroller

2. Decide on colour patterns

3. Save colour patterns in list

4. Setup

a. Set the corresponding LED GPIO pins as output

b. Set the output state of the LED GPIO pins to low

c. Set the selected pins to PWM pins

5. Loop

a. Create a for loop

b. Loop through every colour combination

c. Use the “ChangeDutyCycle(dc)” to change the colour to the

desired value

d. Use a 300ms delay

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

 redPin = Nr1

 greenPin =Nr2

 bluePin =Nr2

 colourListR = [cR1, …, cR10]

 colourListG = [cG1, …, cG10]

 colourListB = [cB1, …, cB10]

 In setup function

o redPWM = set redPin, greenPin and bluePin as output

o greenPWM = set redPin, greenPin and bluePin to state high

o bluePWM = set redPin, greenPin and bluePin as PWM pins with

2000hz

o Initiate PWM with 100% duty cycle

128 DPP - Integrating requirements of Industry 4.0 in TVET

 In main loop

o While true

 For i = 0 to 9

 Set redPWM duticycle to colourListR[i]

 Set greenPWM duticycle to colourListG[i]

 Set bluePWM duticycle to colourListB[i]

 Delay 300ms

2.2.3. Use of ADC (analog to digital converter) for reading analog signals

Reading in sensor values

Microcontroller or extension boards often have the possibly to read in sensor

values via analogue to digital converters. These converters convert (if they are

a voltage interface) a voltage into a number representation. The resolution

depends on the type of ADC converter. Nowadays 8 – 12 Bit converters are

common.

In this example a thermistor will be used as a temperature sensor. A

temperature sensor records the temperature and converts it into output signals.

Temperature sensors can be divided into two types by material and component

characteristics: Thermistor and thermocouple. A thermistor is one of the earlier

types, made of semiconductor materials and usually negative temperature

coefficient (NTK), whose resistance decreases with increasing temperature.

Since the resistance changes acutely with temperature changes thermistors are

the most sensitive temperature sensors.

Read in the voltage of the temperature sensor. Calculate the thermistors value

based on the voltage read from it. You can assume that the thermistor is in a

voltage divider as in 43.

129 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 43: Sensor Set 2.0 für Raspberry Pi 4 Modell B

The Thermistors base resistor value can be read out of the datasheet. Further,

use the datasheet and or internet to research a equation to calculate the

temperature from the calculated thermistor resistance.

Steps:

1. Wire the thermistor to the microcontroller board

2. Setup

a. Initiate the ADC converter

b. Setup the ADC pin as input

3. Loop

a. Reading the thermistor value

b. Calculate the thermistor voltage (careful if 5V or 3.3V)

c. Based on the thermistor voltage calculate the thermistor

resistance

d. Research a method to calculate the thermistors value based on

the datasheet and or internet research (example approximation

with datasheet values)

e. Print temperature values

f. Delay of 500ms between every measurement

130 DPP - Integrating requirements of Industry 4.0 in TVET

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

Voltage and resolution depends on the hardware

 aInPin = Nr1

 In setup function

o Initiate ADC

o Set aInPin as input

 In main loop

o While true

 adcVal = analogeRead(aInPin)

 voltageVal = Voltage * float(adcVal) /resolution

 Rt = 10000 * voltageVal / (5 - voltageVal)

 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 /

(273.15+25)))

 temp = temp - 273.15

 print(temp)

 delay 500ms

2.2.4. Measurement conversion from digital value to physical quantity

Distance measurement

Requirements:

The provided code reads in a ultrasonic sensor. At first the provided code

shall be understood. Afterwards the programme is to be updated so that if a

distance of a object is below 7cm then the warning message: “Danger object

is too close” shall be outputted.

Code:

import RPi.GPIO as GPIO

import time

TRIG = 11

ECHO = 12

Setup Pins

def setup():

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(TRIG, GPIO.OUT)

 GPIO.setup(ECHO, GPIO.IN)

#Calculate Distance

def calcDistance():

 GPIO.output(TRIG, 0)

 time.sleep(0.000002)

131 DPP - Integrating requirements of Industry 4.0 in TVET

 GPIO.output(TRIG, 1)

 time.sleep(0.00001)

 GPIO.output(TRIG, 0)

 while GPIO.input(ECHO) == 0:

 a = 0

 time1 = time.time()

 while GPIO.input(ECHO) == 1:

 a = 1

 time2 = time.time()

 #calculate time between start and stop

 timeDel = time2 - time1

 # convert time to distance

 return timeDel * 340 / 2 * 100

def loop():

 while True:

 dis = calcDistance()

 time.sleep(0.3)

def destroy():

 GPIO.cleanup()

if __name__ == "__main__":

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

Steps:

1. Understand provided code

2. Update code so that distances below 7cm output a warning

Reference solution

Added code segment is marked in yellow.

import RPi.GPIO as GPIO

import time

TRIG = 11

ECHO = 12

Setup Pins

def setup():

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(TRIG, GPIO.OUT)

132 DPP - Integrating requirements of Industry 4.0 in TVET

 GPIO.setup(ECHO, GPIO.IN)

#Calculate Distance

def calcDistance():

 GPIO.output(TRIG, 0)

 time.sleep(0.000002)

 GPIO.output(TRIG, 1)

 time.sleep(0.00001)

 GPIO.output(TRIG, 0)

 while GPIO.input(ECHO) == 0:

 a = 0

 time1 = time.time()

 while GPIO.input(ECHO) == 1:

 a = 1

 time2 = time.time()

 #calculate time between start and stop

 timeDel = time2 - time1

 # convert time to distance

 return timeDel * 340 / 2 * 100

def loop():

 while True:

 dis = calcDistance()

if dis < 7:

print(“Danger object is too close”)

 time.sleep(0.3)

def destroy():

 GPIO.cleanup()

if __name__ == "__main__":

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

133 DPP - Integrating requirements of Industry 4.0 in TVET

3. Create measuring programmes

3.1. Introduction to state machines

3.1.1. Fundamentals of state machines

A state machine is a system that can be described in terms of a set of states

that the system may enter. The next state reached depends on the inputs and

the present state. The outputs also depend on inputs and the present state. A

state may be a set of values measured at various points in a circuit. A simple

flip-flop has two states in which it can exist. A large majority of practical state

machines use locked flip-flops as the storage elements. The code that defines

each state then corresponds directly to the code contain by the flip-flops. The

general model of the sequential machine is shown in figure below.

Figure 44: Fundamentals of state machines

General model of sequential circuit

This model is also called the Mealy machine after the man who first proposed

the model. The input forming logic (IFL) and the output forming logic (OFL)

sections are made up of combinational logic circuits. The memory section

contains the state of the system. A slight variation of the Mealy machine is the

Moore machine which uses only the memory to drive the OFL. In this case, the

output is a function of only the state of the system. When a variable is clock-

driven, it is considered a synchronous variable. If a machine changes state in

response to the clock and all inputs are synchronous, we will classify that circuit

as a synchronous system. If the state changes occur in response to the clock,

but one or more inputs are not clock-driven, the machine will be called a mainly

synchronous system. If the state changes are input-driven rather than clock-

driven, the system is an asynchronous one.

134 DPP - Integrating requirements of Industry 4.0 in TVET

3.1.2. Implementation of state machines for microcontrollers

State machines are useful tools that in the right application can simplify

designing microcontroller firmware. They allow you to create an event-driven

system that can change its response to inputs based on its internal state. The

example below introduces one way to structure a state machine in a

microcontroller environment.

Consider an example system that contains a microcontroller connected to an

LED and a push button. In this example system one press of the button turns

on the LED, a second push of the button will make the LED blink, and if the

button is pressed again the LED will turn off. Also, our system must turn off the

LED after a period of inactivity. If the button hasn't been pressed in the last 10

seconds, the LED will turn off.

Figure 45: Example system state diagram

In our example, every time the button is pressed, the system must take one of

three possible actions (turn on the LED, blink the LED, or turn off the LED). The

response to a button press depends on the current status of the LED, which can

be affected by another event in the system (the 10-second timeout). We must

therefore create a system that keeps track of the LED and uses its status to

decide what to do in response to an input.

A state machine will generate an output determined by both the current internal

state of the system and the input it receives. By changing the state, the system

can generate a different output given the same input as before. If we use the

states to keep track of the LED, then we can determine which output to generate

when the button is pressed.

135 DPP - Integrating requirements of Industry 4.0 in TVET

State Machine Structure

For microcontroller applications, let's use the definition of a finite-state machine.

A finite-state machine has a known set of inputs, outputs, and states. The state

diagram in Figure 1 contains all the elements we need to describe our state

machine; let's define the four different elements of a state machine.

Inputs—any event that requires our system to generate an output or change its

behaviour is an input. Our example has two inputs: a 10-second timeout and a

button press. In our state diagram, the inputs are listed above the arrows

connecting the states.

State transitions—the arrows in the state diagram represent state transitions.

These define when our system will change its behaviour by changing its internal

state. State transitions can only be triggered by an input. In our example, we

trigger a state transition every time an input produces an output that changes

the status of the LED. This way the system's state always keeps track of the

LED. The state transitions also define how our system is allowed to change

behaviour. For example, there is no arrow connecting the LED off state and

LED blink state, therefore the LED can never change directly from the off state

to the blink state.

Outputs—actions that need to be taken by the system in response to an input

are outputs. In Figure 1, the outputs are listed in italics under the state transition

arrows. Like state transitions, our system can only generate an output following

an input event. Our system has three outputs: making the LED turn on, blink or

turn off.

States—the circles in the state diagram represent the states. A state is a list of

rules that tells the system what to do when an input event occurs. When an

input occurs, the system will look at the set of rules defined in its current internal

state and look up which output or state transition it needs to generate, or

whether it should do nothing at all in response to the input. Our states are the

three different LED behaviours we outlined earlier; the state machine is only

allowed to exist in one of these states.

But how do we decide what our states will be, or even how many we should

have? Each state is a different set of rules that define how the system will

respond to the inputs, so all the states need to cover the different output

behaviours we need. Let's take a look at the input-output relationships of our

example in a table instead of the state diagram above.

136 DPP - Integrating requirements of Industry 4.0 in TVET

The button press input can produce three possible outputs based on our

example description. Because the output is dependent on the state and the

input, the only way one input is allowed to produce three possible outputs is to

have three states. A timeout event results in two possible actions, but these can

be included in our three other states.

Finally, it's important to define the initial state of our system. This is the state

that the system will start in on power-up, or if a reset occurs. Our state machine

will always start in the LED off state.

3.1.3. Software design of a sequence programme via state machines

The Hardware

Before we implement the different elements of our state machine in code, let's

look at the hardware we'll use.

The example hardware can be put together with an Arduino, a momentary

switch and a capacitor to debounce the switch. The switch is connected across

the digital 2 and 4 pins on the Arduino (PD2/INT0 and PD4, respectively on the

Atmega) with a suitable valued debounce capacitor (100nF) in parallel. Pin 4 is

set as a sink and pin 2 is set up as an input with internal pull-up enabled. The

example also uses the on-board LED connected to pin 13 (PB5/SCK on the

Atmega).

137 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 46: Hardware used to implement our example

Alternatively, the example hardware can be built on a breadboard. The

schematic on the right shows the relevant Atmega328 circuit used in this

example.

Programming a State Machine

Based on our definitions of a state machine, we need to programme each state

as a list of instructions to execute (outputs, state transitions) for each possible

input, and then have the code navigate to the correct set of instructions. One

simple way to do this is to use nested switch statements as shown below.

138 DPP - Integrating requirements of Industry 4.0 in TVET

/* Example of nested switch statements */

switch(system_state){

 case led_off:

 switch(system_input){

 case button_press:

 turn the led on; // Output

 system_state = led_on; // State transition

 break;

 case timeout:

 break; // do nothing

 }

 break;

 case led_on:

 switch(system_input){

 case button_press:

 blink the led; // Output

 system_state = led_blink; // State transition

 break;

 case timeout:

 turn off the led; // Output

 system_state = led_off; // State transition

 break;

 }

 break;

 case led_blink:

 switch(system_input){

 case button_press:

 turn off led; // Output

 system_state = led_off; // State transition

 break;

 case timeout:

 turn off led; // Output

 system_state = led_off; // State transition

 break;

 }

 break;

}

139 DPP - Integrating requirements of Industry 4.0 in TVET

Application exercises: Simple state machine

Requirements:

Create a simple state machine that consists of four states. The states shall be

called “S1”, “S2”, “S3”, and “S4”. The state S1 will lead to S2, S2 to S3, S3 to

S4 and S4 back to S1 again. The transition shall only happen when a button is

pressed. While in a new state the programme shall output the name of the

state continuously. Ensure that the state only gets changed once per button

press.

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

 activeState = “S1”

 btnPin = Nr1

 btnPressed = 0

 In setup function

o Set btnPin as input and activate the pullup resistor



 While true

o If activeState == “S1”

 Print(“S1”)

 btnVal=digitalRead(btnPin)

 if btnVal == pressed

 btnPressed = 1

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “S2”

o Elif activeState == “S2”

 Print(“S2”)

 btnVal=digitalRead(btnPin)

 if btnVal == pressed

 btnPressed = 1

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “S3”

o Elif activeState == “S3”

 Print(“S3”)

 btnVal=digitalRead(btnPin)

 if btnVal == pressed

 btnPressed = 1

140 DPP - Integrating requirements of Industry 4.0 in TVET

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “S4”



o Elif aciveState == “S4”

 Print(“S4”)

 btnVal=digitalRead(btnPin)

 if btnVal == pressed

 btnPressed = 1

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “S1”

o Delay 200ms

3.2. Measuring programme

Requirements:

A real measurement programme usually does not start immediately when the

microcontroller is connected to power. Instead it will be run in a state machine.

With a initial state “init” where the programme waits for a user input to start. A

measurement state “measure” and usually also a error state “error” in case that

any errors happen. More complicated measurement programmes will have

more states. Such as different types of measurements and so on.

In this task a simple measurement programme shall be implemented. The

programme shall wait dormant in the init state till the user presses a button.

When entering the init state the programme shall initially print “Read for

measurement please press the button”. If a button is pressed then the

programme shall print “Starting to measure” once. Then the programme shall

read in a sensor of your choosing and print the sensor value. The programme

shall make 100 measurements with a delay of 500ms between them. After all

measurements are finished the programme shall print “measurement finished”

and return to the init state. If the user presses the button again during the

measurement then the programme shall stop the measurement state and

instead go into the error state. There the programme shall output once “Error

happened during measurement please reset”. If the user presses again the

button it will return to the init state.

141 DPP - Integrating requirements of Industry 4.0 in TVET

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

 activeState = “S1”

 btnPin = Nr1

 btnPressed = 0

 entry = 1

 In setup function

o Set btnPin as input and activate the pullup resistor

o Initiate ADC

o Set aInPin as input

o Cnt = 0

 While true

o If activeState == “init”

 If entry == 1

 Print(“Read for measurement please press the

button”)

 entry = 0

 btnVal=digitalRead(btnPin)

 if btnVal == pressed

 btnPressed = 1

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “measure”

 entry = 1

o Elif activeState == “measure”

 If entry == 1

 Print(“Starting to measure”)

 entry = 0

 cnt = 0

 sensVal = analogeRead(aInPin)

 print(sensVal)

 cnt = cnt+1

 if btnVal == pressed

 btnPressed = 1

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “error”

 if cnt >= 99

142 DPP - Integrating requirements of Industry 4.0 in TVET

 aciveState = “init”

o Elif activeState == “error”

 If entry == 1

 Print(“Error happened during measurement please

reset”)

 entry = 0

 btnVal=digitalRead(btnPin)

 if btnVal == pressed

 btnPressed = 1

 Elif btnPressed == 1 and btnVal == not pressed

 bnPressed = 0

 activeState = “init”



o Delay 500ms

4. Communication methods and data exchange

4.1. HTTP Requests

4.1.1. Basics to webbased communication

HTTP is a set of protocols designed to enable communication between

clients and servers. It works as a request-response protocol between a client

and server.

A web browser may be the client, and an application on a computer that

hosts a website may be the server.

So, to request a response from the server, there are mainly two methods:

GET : to request data from the server.

POST : to submit data to be processed to the server.

Here is a simple diagram which explains the basic concept of GET and POST

methods.

143 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 47: Webbased communication

Now, to make HTTP requests in python, we can use several HTTP libraries

like:

httplib

urllib

requests

The most elegant and simplest of above listed libraries is Requests. We will

be using requests library in this article. To download and install Requests

library, use following command:

pip install requests

Making a Get request

importing the requests library

import requests

api-endpoint

URL = "http://maps.googleapis.com/maps/api/geocode/json"

location given here

location = "delhi technological university"

defining a params dict for the parameters to be sent to the API

PARAMS = {'address':location}

sending get request and saving the response as response object

r = requests.get(url = URL, params = PARAMS)

http://maps.googleapis.com/maps/api/geocode/json

144 DPP - Integrating requirements of Industry 4.0 in TVET

extracting data in json format

data = r.json()

extracting latitude, longitude and formatted address

of the first matching location

latitude = data['results'][0]['geometry']['location']['lat']

longitude = data['results'][0]['geometry']['location']['lng']

formatted_address = data['results'][0]['formatted_address']

 # printing the output

print("Latitude:%s\nLongitude:%s\nFormatted Address:%s"

 %(latitude, longitude,formatted_address))

The above example finds latitude, longitude, and formatted address of a given

location by sending a GET request to the Google Maps API. An API

(Application Programming Interface) enables you to access the internal

features of a programme in a limited fashion. And in most cases, the data

provided is in JSON(JavaScript Object Notation) format (which is

implemented as dictionary objects in Python!).

Now, in order to retrieve the data from the response object, we need to convert

the raw response content into a JSON type data structure. This is achieved by

using json() method. Finally, we extract the required information by parsing

down the JSON type object.

Making a POST request

importing the requests library

import requests

defining the api-endpoint

API_ENDPOINT = "http://pastebin.com/api/api_post.php"

your API key here

API_KEY = "XXXXXXXXXXXXXXXXX"

your source code here

source_code = '''

print("Hello, world!")

a = 1

b = 2

print(a + b)

'''

data to be sent to api

data = {'api_dev_key':API_KEY,

https://en.wikipedia.org/wiki/JSON
http://pastebin.com/api/api_post.php

145 DPP - Integrating requirements of Industry 4.0 in TVET

 'api_option':'paste',

 'api_paste_code':source_code,

 'api_paste_format':'python'}

sending post request and saving response as response object

r = requests.post(url = API_ENDPOINT, data = data)

extracting response text

pastebin_url = r.text

print("The pastebin URL is:%s"%pastebin_url)

4.1.2. Server-side setup of a web service for recording and evaluating

requests.

Creation of client sided communication programme using HTTP

requests

Requirements

In this task a microcontroller shall read in values of a sensor of your choosing.

The microcontroller shall read in a measurement every 500ms. The sensor

data shall be sent directly towards a computer via HTTP – Request. The

computer shall have a measurement software running for reading in the

sensor’s values, converting them to physical values and printing them on a

line graph.

Steps:

1. Create a measurement programme on a microcontroller that reads in

every 500ms values from a sensor

2. Update the programme to send out the measured values via HTTP

request to a pc

3. Set up a server programme on a pc to read in the values transmitted via

HTTP request

4. Upgrade the pc programme to display the received values in a line

diagram

146 DPP - Integrating requirements of Industry 4.0 in TVET

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

Further this example needs a http request library to be includes (example:

import requests)

Also a http server needs to be running (example: using the flask library)

Client:

 aInPin = Nr1

 In setup function

o Initiate ADC

o Set aInPin as input

o url = set URL as string

 In main loop

o While true

 adcVal = analogeRead(aInPin)

 physicalVal = convertToPhysical(adcVal)

 data = {‘SensVal’, physicalVal}

 request.post(url, data)

 delay 500ms

Server:

 rcvData = []

 In callback function during receiving

o rcvData.append(request.form[‘SensVal’])

o plot rcvData without blocking

147 DPP - Integrating requirements of Industry 4.0 in TVET

4.2. Server Communication

4.2.1. Basics to Client Server bases communication architectures

When using computers, each of us has a need to connect to collect and share

information. To meet that need, a computer network or a network system

(computer network or network system) was born.

On a network, computers can take on one of the following three roles:

Figure 48: Client Server Communication

• Computer plays the role of server - Server: A computer capable of

providing resources and services to other workstations in the network. The

server plays a supporting role for the operations on the client workstation to

take place more efficiently.

• Computers act as workstations - Client: As workstations, they will not

provide resources to other computers, but only use resources provided from

the server. A client in one model can be a server for another, depending on

the user's needs.

• Computer plays the role of Peer: Both use resources from the provider

server, and also provide resources to other computers in the network.

The computer roles that provide for the network are different, so of course there

are many different computer network models: Client Server, Peer-to-Peer and

Hybrid. In which, the client server network model is the most widely used.

148 DPP - Integrating requirements of Industry 4.0 in TVET

What is the Client Server model?

The client server network model is a computer network model in which the child

computers act as a client, they are responsible for sending requests to the

server. Let the server process the request and return the result to that client.

Figure 49: Client Server model

Working principle of Client Server model

In the Client Server model, the server accepts all valid requests from anywhere

on the network, and then returns the results to the computer that sent the

request.

Computers are considered as clients when they are responsible for sending

requests to servers and waiting for a response to be sent.

149 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 50: Working principle of Client Server model

In order for the client and the server to communicate with each other, there must

be a certain standard between them, and that standard is called a protocol.

Some standard protocols are widely used today such as TCP/IP, OSI, ISDN,

X.25, Lan-to-Lan, .. Then, if the client wants to get information from the server,

they must according to a protocol that the server offers. If the request is

accepted, the server collects the information and returns the result to the

requesting client. Because normally, the server is always in a state of being

ready to receive requests from clients, so as long as the client sends a signal

and accepts the request, the server will return the result in the shortest time

possible.

150 DPP - Integrating requirements of Industry 4.0 in TVET

Advantages and disadvantages of the client server model

Advantages

• The client server model makes it possible to work on any computer that

supports communication protocols. This standard protocol also helps

manufacturers integrate into many different products without any difficulty.

• There can be many server chapters doing the same service, they can be on

more than one computer or one computer.

• Client server model only carries the characteristics of the software, but is not

related to the hardware, in addition to the only requirement that the server must

have a higher configuration than the clients.

• Client server supports users with a variety of services and convenience by

remote access that the old models do not have.

• The client-server network model provides an ideal foundation, allowing the

integration of modern techniques such as object-oriented design models, expert

systems, and geographic information systems (GIS).

Disadvantages of client-server model:

Due to the need to exchange data between two different computers in two

geographically distant areas, the issue of information security is sometimes not

very secure. This is the only downside of this model.

4.2.2. Server-side creation of a communication programme for data

acquisition and data backup using web sockets, Client-side creation of a

measurement and communication programme, for connection

establishment and data transmission

Websockets – Visualization server

Requirements:

In this task the microcontroller acts as client and sends its measurement data

periodically to the pc who acts as server. The microcontroller shall send every

200ms a sensor measurement to the server via WebSocket communication.

The computer shall act as a server, for every incoming measurement the

computer shall receive the measurement data and print it display it

accordingly on a visualization.

Steps:

1. Prepare the client communication programme on the microcontroller

2. Create a measurement programme based on the microcontroller

3. Update the programme to send data over websockets

4. Create the server sided webserver communication

5. Create a visualization based on the received sensor data

151 DPP - Integrating requirements of Industry 4.0 in TVET

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

Further this example needs a websocket library to be includes (example:

import socket)

Client:

 aInPin = Nr1

 In setup function

o Initiate ADC

o Set aInPin as input

o host = host address as string

o port = port to be used as int

 In main loop

o Socket.connect(host,port)

o While true

 adcVal = analogeRead(aInPin)

 physicalVal = convertToPhysical(adcVal)

 data = convert to string physicalVal

 data = encody to bytes data

 socket.sendall(data)

 delay 200ms

Server:

 rcvData = []

 host = host address as string

 port = port to be used as int

 socket.bind(host,port)

 socket.listen()

 conn, addr = socket.accept()

 while true

o data = conn.recv(1024)

o if data:

 data = float(data.decode(‘utf-8))

 rcvData.append(data)

 plot rcvData without blocking

152 DPP - Integrating requirements of Industry 4.0 in TVET

Websockets - Measurment server

Requirements:

The requirement in this task is to set up a client server based websocket

communication system. The microcontroller shall be configured as a

measurement server. The PC shall operate as a client. Whenever the client

sends a measurement request to the server the server shall measure a value

from a sensor. This value shall be send back to the client. The client then shall

save the value in a csv file. Further the client shall have a graphical user

programme implemented. So that the user can request a measurement by

pressing a button.

Steps:

1. Create a measurement function on the microcontroller which can read

in sensor values the function shall be called “readInSensor()” and it

shall return the sensor value

2. Create the server functionality on the microcontroller

a. When a client request is received the server shall call the function

“readInSensor()”

b. The read in value shall be send via socket communication back to

the client that requested the value

3. Create the client based websocket functionality

4. Create a Graphical User Interface on the client PC

a. One button shall be used to create a client request for the server

to return a sensor value

5. Update the client programme to save the received values in a .csv file

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

Further this example needs a websocket library to be included (example:

import socket)

Also, a library for creating graphical user interfaces (example: tkinter) and a

library to write data to a .csv file needs to be included (pandas)

153 DPP - Integrating requirements of Industry 4.0 in TVET

Client:

 host = host address as string

 port = port to be used as int

 open window

 create button object on window with callback function

 in button callback function:

o socket.connect(host,port)

o socket.sendall(“newData”)

o data = s.recv(1024)

o data = data.decode(‘utf-8)

o writeToCSV(data)

Server:

 aInPin = Nr1

 host = host address as string

 port = port to be used as int

 In setup function

o Initiate ADC

o Set aInPin as input

o host = host address as string

o port = port to be used as int

o socket.bind(host,port)

 while true

o

o socket.listen()

o conn, addr = socket.accept()

o data = conn.recv(1024)

o adcVal = analogeRead(aInPin)

o physicalVal = convertToPhysical(adcVal)

o data = convert to string physicalVal

o data = encody to bytes data

o conn.sendall(data)

154 DPP - Integrating requirements of Industry 4.0 in TVET

Websockets - Control panel

Requirements:

In this task the microcontroller shall be used as server and controlled via a

graphical user interface created on the pc which acts as a client. The

graphical user interface shall have two buttons one to increase the brightness

of a LED and one to reduce the brightness of the LED. The LED itself shall be

controlled on the microcontroller via PWM. Alternatively to the LED if available

a motor shield and a dc motor can be controlled. The communication shall be

done via Websockets. Every time the buttons on the GUI on the computer are

pressed a command to the microcontroller shall be send. The microcontroller

shall receive the command and either increase or decrease the brightness of

the LED

Steps:

1. Create the client based communication software

2. Create the server based communication software

3. Update the client software to dim a LED

a. Create a function “dimLED(value)” which receives a dimming

value for the LED and sets the PWM according to the value. No

return value is needed

b. Consider to ensure that no value above the max value of the

PWM is inputted

4. Create a server sided GUI which with two buttons to send commands to

increase or decrease the PWM value

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

Client:

 host = host address as string

 port = port to be used as int

 dc = input()

 dc.encode()

 socket.connect(host,port)

 socket.sendall(dc)

155 DPP - Integrating requirements of Industry 4.0 in TVET

Server:

 LEDPin = Nr1

 host = host address as string

 port = port to be used as int

 In setup function

o Initiate ADC

o ledPWM = set LEDPin as output

o Initiate PWM with 0% duty cycle

o host = host address as string

o port = port to be used as int

o socket.bind(host,port)

 while true

o socket.listen()

o conn, addr = socket.accept()

o data = conn.recv(1024)

o data = data.decode(“utf-8”)

o data = float(data)

o set ledPWM duticycle to data

4.3. Publisher subscriber commuinication

4.3.1. Publisher Subscriber Communication Architecture Basics

The publish/subscribe pattern (also known as pub/sub) provides an alternative

to the traditional client-server architecture. In the client-client model, the client

communicates directly with the endpoint. The pub / sub model separates the

client that sends the message (publisher-publish) from the client or the client

that receives the message (subscriber-subscriber). Publishers and subscribers

never communicate directly. In fact, they are not even aware that the other

exists. The connection between them is handled by a third party (broker-broker).

The broker's job is to filter all incoming messages and deliver them correctly to

subscribers. So let's dive a little deeper into some general aspects of pub/sub.

156 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 51: Publish/subscribe pattern

The most important aspect of pub/sub is the separation of the message

publisher from the receiver (subscriber). This separation has several

dimensions:

 Spatial separation: Publishers and subscribers do not need to know each

other (e.g. do not exchange IP addresses and ports).

 Time Separation: Publishers and Subscribers don't need to run at the

same time.

 Split Synchronization: Operations on both components need not be

interrupted during publish or receive.

In a nutshell, the pub/sub model eliminates direct communication between

message publishers and recipients/subscribers. The broker's message filtering

allows to control which clients/subscribers receive which messages. Decoupling

has three dimensions: space, time, and synchronization.

157 DPP - Integrating requirements of Industry 4.0 in TVET

4.4. Implementation of a programme for communication and data

exchange of two microcontrollers with provided function blocks

Simple Communication

Requirements:

In this task the MQTT communication protocol shall be used to transfer data

from a publisher to a subscriber via a broker. The microcontroller shall be a

publisher and read in the temperature via a temperature sensor. The publisher

shall publish on a topic called “TempSens1”. The publisher shall read in

temperature values every second publish them onto the named topic. The

computer will be working as subscriber. The subscriber will read in the values

from the topic “TempSens1” and print them in the consol. Further the computer

will also host the required broker.

Steps:

1. Setup a broker on the computer and run the broker

2. Create a measurement programme on the microcontroller to read in the

temperature sensor measurement and test it

3. Include the necessary libraries on the microcontroller and create the

topic to be published to

4. Include the necessary libraries on the computer and create subscribe to

the topic where the sensor values are published at

5. Update the programme to read the published values and print them out

on the console

Reference solution

Solution in pseudo code (Pin numbers depend on hardware implementation)

Further a mqtt library needs to be installed (example phao)

Broker:

Start the broker

Publisher:

 aInPin = Nr1

 client = mqtt.Client()

 In setup function

o Initiate ADC

o Set aInPin as input

o host = host address as string

o port = port to be used as int

158 DPP - Integrating requirements of Industry 4.0 in TVET

 In main loop

o Connect to client with host adress and port

o Client.loop_start()

o While true

 adcVal = analogeRead(aInPin)

 physicalVal = convertToPhysical(adcVal)

 client.publish(“/TempSens1”, physicalVal)

Subscriber:

 on_connect function:

o client.subscribe(“/TempSens1”)

 on_message function:

o print(str(msg.payload))

 client = mqtt.Client()

 client.on_connect = on_connect

 client.on_message = on_message

 serverAdr = server address as string

 port = port to be used as int

 connect to server with serverAdr and port

 client.loop_forever()

Illustration 5: CPU processor lighting circuits

159 DPP - Integrating requirements of Industry 4.0 in TVET

Teamwork multiple sensor nodes

Requirements:

In this task the MQTT communication protocol shall be used to send sensor

data with at least two different microcontrollers as sensor nodes. This is a

group exercise with at least 2 people. Every participant shall take one node

and or computer. The participants have to communicate and distribute tasks

within the group. The types of used sensors and the topic names for every

node can be chosen as desired but have to be different for every node. The

subscriber again shall be a computer. The subscriber shall subscribe to both

topics, read in the values of both topics and print the received values and the

topic name on the console.

Steps:

1. Decide which participant takes which node/computer

2. Decide which sensors shall be used and which names the topics shall

get

3. Implement the logic of every node and of the subscriber

a. Reading in sensor values

b. Publishing to topic

c. Subscribing to topic

d. Printing on console

Solution in pseudo code (Pin numbers depend on hardware implementation)

This example can be solved exactly as Simple communication only with

adding several publishers and topics

160 DPP - Integrating requirements of Industry 4.0 in TVET

Project Microcontroller : Data acquisition in I4.0 Setup

1. Introduction

All I4.0 applications have one base product which they rely on, which his data.

Production data is already most valuable to companies for optimization and

quality measures. Yet company’s around the world still have classical

production plants without any or only proprietaries data acquisition possibilities.

One of the big challenges in future will be to identify and measure production

and environmental data and store it. For companies to produce their new

product “data” and to lift their productions into the realm of I4.0 it is mandatory

to create awareness and skill in measuring important physical values and

sending them via networks to storage stations. In this project a full-scale data

acquisition scenario will be implemented.

Requirements:

 Experience in object-oriented programming

 UML

o Use case diagram

o Class diagram

o Sequence diagram

 Flow chart

 Software testing

 Finished theoretical and practical part of course LC2

1.1. Additional information – for teachers

If other process stations are used then described below adapt the description

to your existing system. This project was written in a general hardware

independent way in terms or used sensors. Some of the exercises will provide

tasks to identify sensor parameters from the datasheet. These need to be

adjusted to the used hardware. Further only use sensors where you can also

provide a datasheet.

161 DPP - Integrating requirements of Industry 4.0 in TVET

2. Basic setup

There are two classical production stations. Both production stations are

functional and operate without modern ways of data acquisition. Today

production data is of great value for every company and delivers the potential

for optimization. It will be your task to upgrade the classical production stations

into a I4.0 set up. Since selecting the right sensors, creating measurement

programmes and sending the data via computer networks to server stations is

the basis of I4.0 this project main focus will be on setting up a functional base

framework. In this project the entire workflow from system and requirement

identification up to practical implementation and testing will be done. The Basic

setup will be the extend a existing processing station by measuring temperature

and acceleration data. In the following sections the process stations will be

explained.

2.1. CPSi 4.0

The process station CPSi is displayed in below. The process station can be

controlled via microcontroller and system buttons. In this example only the

control with system buttons shall be considered. When a system button is

pressed the processstation starts by ejecting a cube from the cube magazine.

The cube is tested in several stations. After the final station the cube is either

ejected with a pneumatic cylinder or passed through.

Figure 52: CPS i4.0 training system (front view)

162 DPP - Integrating requirements of Industry 4.0 in TVET

a Microcontroller (XDK) i Capacitive sensor

b System buttons j Position sensor (on contour

cylinder)

c Emergency stop k Inductive sensor

d WLAN router l Light barrier

e Cube magazine m Pneu. cylinder and 5/2

directional control valve

f XM22 (PLC) n RFID antenna

g Conveyor belt o Collecting ramp

h Light conductor

2.1.1. System description

Before the test, the cubes are stored in a magazine (fig. 8 - 0). The magazine

is manually refilled with new cubes. The buttons can be used to select a cube

type and start an order. At the height of the second cube in the magazine, there

is a mechanical switch. The switch triggers when no cube is pressed against it

(NC - normally closed). Provided that:

 there are at least 2 cubes in magazine,

 emergency stop released,

 light conductor unobstructed,

 conveyor belt at a standstill,

 all cylinders in basic position,

... the valve operates the magazine.

Figure 53: Cubes at
start under RFID
antenna

163 DPP - Integrating requirements of Industry 4.0 in TVET

The valve is located on the back of the magazine together with a pneumatic

cylinder. The cylinders are operated using compressed air with at least 1 bar.

The compressed air is distributed to the valves by a compressed air distribution

system. Depending on the valve position, the valves feed the compressed air

into the cylinder chambers. The compressed air supply to the cylinder chambers

can be regulated via throttles at the inlet points. When the piston is extended, it

pushes one cube half onto the conveyor belt. The position of the cylinders is

detected via reed contacts. The switches trigger with magnetic materials. There

are two reed contacts on the magazine cylinder which detect the basic position

and the working position of the piston.

A DC motor is flange-mounted on the other end of the conveyor belt. The motor

drives the conveyor belt. The direction of rotation is determined by two relays.

Before the conveyor belt starts, the magazine cylinder returns to the basic

position and the RFID antenna above the cube half writes a code number for

the cube type on the RFID tag in the cube.

The cubes move in the process direction from right to left. They pass several

stations on the conveyor belt. Depending on the process at the station, the

conveyor belt is stopped or the workpiece is evaluated as it passes through.

Figure 54: Magazine cylinder with two reed contacts

164 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 55: CPSi4.0 workpiece positions Stations

1. RFID antenna: Code number is written on the tag in the cube.

2. Light conductor: Detects cube position (lateral)

3. Capacitive sensor: Detects cube position (top)

4. Contour cylinder: Piston moves on workpiece and the position sensor

measures the distance covered - inference to orientation (base / cover)

5. Inductive sensor: Detects metallic material - inference to material

6. Light barrier: Detects bright objects - inference to colour

7. RFID antenna: Code number is read from tag

8. Ejection cylinder: Eject position for wrong cubes

165 DPP - Integrating requirements of Industry 4.0 in TVET

The workpiece

first passes a light

conductor and

then a capacitive

sensor. The

workpiece is

detected laterally

or from above.

Through the

feedback, the

programme

knows when and

where a cube is

on the conveyor

belt. After the sensors have been triggered, the conveyor belt stops so that the

workpiece is positioned under the contour cylinder. The redundant detection

ensures that the cube half is positioned exactly.

Figure 56: Cube
detected by
capacitive sensor

Figure 57: Contour
check cylinder
with position
sensor for base
part (above) and
cover part (below)

166 DPP - Integrating requirements of Industry 4.0 in TVET

If the conveyor belt stops here, the cylinder piston extends. This cylinder is

controlled by a pneumatic valve for closed-loop control (fig. 2 - h). With a base

part, the cylinder extends completely. A reed contact will detect this position.

With a cover part, the piston presses on the cube. This process is limited in

time. After the time has elapsed, the piston retracts. The distance covered is

recorded by a position sensor. This sensor is also mounted on the cylinder

housing. The workpiece orientation is deduced from the return value.

Figure 158: Inductive sensor with aluminum cube (above) and light barrier with

plastic cube (below)

167 DPP - Integrating requirements of Industry 4.0 in TVET

If the piston is in the basic position, the conveyor belt continues to move. The

workpiece passes an inductive sensor and a light barrier. The inductive sensor

only responds to metallic objects. The light barrier detects bright objects (white

or silver). An illuminated LED at the top of the sensors indicates that the sensors

have detected something. The conveyor belt does not have to stop here. The

information of orientation, material and colour are saved.

The workpiece stops at the second light conductor. This is positioned opposite

the second RFID antenna. The code number on the tag (cube type) is compared

with the saved properties. If there is a match, the cube half moves to the gray

mark (end of conveyor belt). In the event of an error, the conveyor belt reverses

to the ejection cylinder and is pushed onto the ejection ramp. If there are enough

cubes in the magazine, the process is automatically repeated.

Figure 159: Light
conductor stops
cube under RFID
antenna (above)
and wrong cube in
ejection position
(below)

168 DPP - Integrating requirements of Industry 4.0 in TVET

2.2. Bottling Station

The bottling station is a purely mechanical station. Sofar there are no means of

data acquisition present. The bottling station takes bottles, cleans them in the

cleaning station, fills them in the filling station and finally puts the cap on the

bottle in the capping station.

Figure 160: Bottling station full setup, cleaning(left), filling (middle) and

capping (right)

After the bottling process has finished new bottles need to be put at the input

stream to restart the process.

The cleaning station is the first process entered by a bottle in the entire bottling

station. The bottles in the stations instream position will be mechanically gripped

on their head, moved upwards and cleaned. The entire cleaning process will be

conducted within one rotation of the cleaning station. After cleaning has finished

the bottle is released in the out-stream position. There is no check for correct

placement of bottles on the instream position, nor at the out-stream position.

Therefore, it is not possible to detect bottles which got flipped over. Which in

term means all bottles have to be placed correctly at the conveyor belt before

the process is started.

169 DPP - Integrating requirements of Industry 4.0 in TVET

The filling station mechanically takes in a bottle and mounts it on a predefined

position. If a bottle gets mounted the filling valve will be opened and liquid will

be filled inside the bottle. The filling process will be automatically initiated if a

bottle is at the input position and the rotation process is initiated. After the

rotation process has finished and the bottle is at the stations out stream position

the valve will be automatically sealed again. On the in stream position its

assumed that the bottles already enter sequentially and are positioned correctly.

There is no testing or ejection system if a bottle has fallen over.

Figure 161: Cleaning station

170 DPP - Integrating requirements of Industry 4.0 in TVET

After the bottles have been cleaned and filled with water they will be passed to

the final station, the capping station. Here the bottles again will be picked

sequentially. In one process they will be rotated and a cap will be mounted at

the bottles head. Afterwards the bottles will be passed to the stations down

stream position. There is no checking if the cap was placed correctly on the

bottle head. Neither will here be any checks if the bottles arrive in correct

position in the in-stream position. Also, after the bottles have been capped there

is no check if the bottles are positioned correctly at the out-stream position.

Further the caps need to be

manually filled in the caps

storage

All three stations deliver

possilbitys to mount sensors

and measure ambient

environmental values.

Figure 162: Filling station

Figure 163:
Capping station

171 DPP - Integrating requirements of Industry 4.0 in TVET

3. Hardware selection – general microcontroller

To correctly measure and analyse physical values sensors are required. The

existing processing station shall be upgraded by two types of sensors. One is a

temperature sensor which has a thermistor. The other one is a accelerometer,

the other one is a temperature sensor. The temperature sensor shall track the

ambient room temperature. These sensors are often used on different locations

in the production to track the temperature influence on processes. The

accelerometer is used to track the acceleration of components. Further it can

also be used to track vibrations and even be used to detect certain faults such

as unbalance.

3.1. Identify sensor parameters

In a first step identify the provided temperature sensor and accelerometer in the

datasheet and write its type down:

Temperature

sensor

Accelerometer

Thermistor type sensors have several important parameters look up in the

datasheet and fill out the missing parameters in the table. Data sheets usually

contain several different categories of the same sensor. Make sure to only write

the parameters of your sensor:

Parameter Value

R25

R/R25

α

Search the parameters in the datasheet of the accelerometer and list them in

the table below:

Parameter Value

highest scale

range

smallest scale

factor

Biggest scale

factor

172 DPP - Integrating requirements of Industry 4.0 in TVET

3.2. Calculate sensor physical value

The provided thermistor is a NTC type. Therefore, the thermistors resistance

will decrease with falling temperature. Linear interpolation is one method to

calculate the thermistors temperature based on the measured resistance. To

create a linear interpolation the np.interp function can be used. The function will

be explained below.

3.2.1. Visualize curve

In a first step create a programme to visualize the resistance curve based on

the datasheet in a range of 0°C to 50°C. Since we want to calculate the

temperature based on the resistance make sure to use the temperature on the

y – axis and the resistance on the x axis. In the table below a sample plot with

different values is provided. Insert a picture of your plot in the column “Your

solution”. Make sure that your own solution has the same colours, labels and

title as the sample plot. Further upload the entire picture and code on the

provided task.

Sample plot Your solution

Figure 164: Visualise curve

173 DPP - Integrating requirements of Industry 4.0 in TVET

3.2.2. Linear interpolate sensor value

A linear interpolation function makes a linear interpolation between provided

points (it fits a line between the points). This technique is very commonly used

to calculate sensor values without the usage of equations. The np.inpterp

function provides a linear interpolation.

Create a programme to interpolate the thermistors temperature values based

on given temperature values. The programme shall be tested by creating test

data. Use the function np.linespace(start, stop, nrSteps) to create test values

for the resistance. Let start be 3000, stop be 3000 and 50 steps. Plot the

resulting graph in the table below. Insert a picture of your plot in the column

“Your solution”. Make sure that your own solution has the same colours, labels

and title as the sample plot. Further upload the entire picture and code on the

provided task.

Description:

x=np.linspace(start,stop,nrSteps)

 Start… first value to be created

 Stop… last value to be created

 nrSteps amount of steps between first and last value

y=np.interp(x,Xp,Yp)

 x … x value where interpolation shall be calculated

 Xp … array of provided points in x direction from data sheet

 Yp … array of provided points in y direction from data sheet

Sample plot Your solution

Figure 165: Linear interpolate

174 DPP - Integrating requirements of Industry 4.0 in TVET

4. Measurement programme – basic microcontroller

After selecting the hardware, a simple measurement programme shall be

implemented. The measurement programme shall read in the temperature

sensors values and the acceleration sensors values and print them directly on

the console. Every measurement shall be taken with a interval of 2 seconds.

Enter a screenshot of the console output in the table below. Upload your code

and a screenshot of the console output.

The required output shall be:

“Temperature sensor: XXX°C”

“AccelerometerX: XXXg”

“AccelerometerY: YYYg”

“AccelerometerZ: ZZZg”

Console output:

175 DPP - Integrating requirements of Industry 4.0 in TVET

5. Measurement programme – Bosh XDK

The bosh XDK is a robust

microcontroller platform with a wide

sensor array. It is commonly used

in industrial applications especially

for data tracking. The bosh XDK

delivers a wide sensor array, a

integrated wifi module, a sd card

reader to store data on a memory

card, freely configurable buttons

and a usb connector to connect the

XDK to a PC for flashing new

programmes and directly

outputting values in the console of

its own IDE.

Figure 166: XDK sensor structure

Figure 167: XDK sensor
function

The bosh XDK further permits its user to

access many types of sensors. Users

can measure acceleration, temperature,

humidity, air pressure and many more.

Further the XDK uses “FreeRTOS” as

realtime operating system. This ensures

that precicly timed measurements with

defined intervals are possible.

Further bosh uses a own eclipse based IDE called XDK-Workbench. This IDE

gives the user the choice to either programme the XDK directly with C, or to use

MITA programming language. MITA programming language was developed to

lessen the burden of creating I4.0 applications without knowledge of embedded

programming. The website: https://developer.bosch.com/web/xdk/getting-

started#1 is provided by bosh and has sample code for reading in sensor

values. Part of this task is to read through the descriptions and sample codes

and reuse them to create a working programme.

https://developer.bosch.com/web/xdk/getting-started#1
https://developer.bosch.com/web/xdk/getting-started#1

176 DPP - Integrating requirements of Industry 4.0 in TVET

The task of this section is to create a measurement programme that reads in

the sensor values of the:

 Accelerometer

 Humidity sensor

 Temperature sensor

 Pressure sensor

The read in values shall be outputted on the console of the XDK – Workbench.

The project shall be programmed in MITA programming language.

Measurements shall be done every 3 seconds. The desired console output shall

be as follows:

Acceleration in X: XXXg

Acceleration in Y: YYYg

Acceleration in Z: ZZZg

Humidity: XXX%

Temperature: XXX°C

Air pressure: XXXkPa

Enter a screenshot of the console output in the table below. Upload your code

and a screenshot of the console output.

Console output:

177 DPP - Integrating requirements of Industry 4.0 in TVET

6. Sensor placement and wiring

After the test programmes were successfully completed the sensors can be

placed a desirable location. For the CSPi4.0 station the ambient temperature

and the vibrations of the ejection cylinder shall be measured. Same goes for the

bottling station. Find a valid location for the sensor placement and document

your decision with a picture. Further describe in your own words why you

choose this location in the table below:

Picture Documentation

7. Communication protocol

After the sensors and microcontroller got a valid location for measurement the

communication protocol shall be implemented. After implementing one of the

solutions take a picture of the console output of the pc and print it in the field

below. Further upload the console output and all code.

178 DPP - Integrating requirements of Industry 4.0 in TVET

7.1. Common microcontroller

The before described sensors of the microcontroller shall be used to create a

measurement programme. As communication protocol the publisher and

subscriber method using the MQTT protocol shall be used.

Steps:

1. Setup a broker on the computer and run the broker

2. Use your measurement programme for the microcontroller to read in the

sensor values. Let the microcontroller read in with a interval of 1.5

seconds

3. Include the necessary libraries on the microcontroller and create the

topic to be published to.

a. Topic name temperature sensor

i. Measurement/Temp

b. Topic name accelerometer

i. Measurement/AccelX

ii. Measurement/AccelY

iii. Measurement/AccelZ

4. Include the necessary libraries on the computer and subscribe to the

topic where the sensor values are published at

5. Print the published values on the computers console

Console output

179 DPP - Integrating requirements of Industry 4.0 in TVET

7.2. XDK

The XDK offers the possibility to transmit data via publisher and subscriber

method using the MQTT protocol. Since the XDK offers a great variety of

sensors multiple sensors shall be transmitted to the computer.

Steps:

1. Setup a broker on the computer and run the broker

2. Use your measurement programme for the microcontroller to read in the

sensor values. Let the microcontroller read in with a interval of 3

seconds

3. Include the necessary libraries on the microcontroller and create the

topic to be published to.

a. Topic name temperature sensor

i. MeasurementXDK/Temp

b. Topic name accelerometer

i. MeasurementXDK/AccelX

ii. MeasurementXDK/AccelY

iii. MeasurementXDK/AccelZ

c. Topic name humidity

i. MeasurementXDK/Humidity

d. Topic name pressure

i. MeasurementXDK/Pressure

4. Include the necessary libraries on the computer and subscribe to the

topic where the sensor values are published at

5. Print the published values on the computers console

6. Console output

180 DPP - Integrating requirements of Industry 4.0 in TVET

7.3. Create measurement file

After successfully establishing the connection to the pc update the pc

programme to also write the received temperature sensor values int a .csv file.

The file shall be named “temperature.csv”. During the measurement the

microcontroller shall send every 5 seconds a new measurement. After 2

minutes the measurement shall be stopped Calculate the mean value of all

measurements and upload the measurement file.

Mean value:

181 DPP - Integrating requirements of Industry 4.0 in TVET

TRAINING UNIT 3: DATABASE SYSTEMS
Objective: The trainees:

- Have a basic understanding of databases and related system concepts

- Are able to set up and configure a database server

- Know the basic command sequences for manipulating databases

- Are able to develop programmes which write measured values into

databases and read them from databases

Content:

1. Database systems basics

1.1. Basics for usage of databases

1.1.1. Basic concepts of databases

A database intends to have a collection of data stored together to serve

multiple applications as possible. Hence a database is often conceived of as a

repository of information needed for running certain functions in a corporation

or organization. Such a database would permit not only the retrieval of data but

also the continuous modification of data needed for control of operations. It may

be possible to search the database to obtain answers to queries or information

for planning purposes.

Purpose of Database

A database should be a repository of data needed for an organization's data

processing. That data should be accurate, private, and protected from damage.

It should be accurate so that diverse applications with different data

requirements can employ the data. Different application programmers and

various end-users have different views upon data, which must be derived from

a common overall data structure. Their methods of searching and accessing of

data will be different.

182 DPP - Integrating requirements of Industry 4.0 in TVET

Advantages of Using Database

Database minimizes data redundancy to a great extent.

The database can control the inconsistency of data to a large extent.

Sharing of data is also possible using the database.

Database enforce standards.

The use of Databases can ensure data security.

Integrity can be managed using the database.

Various Levels of Database Implementation

The database is implemented through three general levels. These levels

are:

Internal Level or Physical level

Conceptual Level

External Level or View Level

The Concept of Data Independence

As the database may be viewed through three levels of abstraction, any change

at any level can affect other levels' schemas. Since the database keeps on

growing, then there may be frequent changes at times. This should not lead to

redesigning and re-implementation of the database. The concepts of data

independence prove beneficial in such types of contexts.

Physical data independence

Logical data independence

Basic Terminologies Related to Database and SQL

Relation: In general, a relation is a table, i.e., data is arranged in rows and

columns. A relation has the following properties:

In any given column of a table, all the items are of the same kind, whereas

items in different columns may not be of the same kind.

For a row, each column must have an atomic value, and also for a row, a

column cannot have more than one value.

All rows of a relation are distinct.

The ordering of rows in a relationship is immaterial.

The column of a relation are assigned distinct names, and the ordering of

these columns is immaterial.

Tuple: The rows of tables in a relationship are generally termed as Tuples.

Attributes: The columns or fields of a table is termed as Attributes.

Degree: The number of attributes in a relation determines the degree of

relation. A relation having three attributes is said to have a relation of

degree 3.

Cardinality: The number of tuples or rows in a relation is termed as cardinality.

183 DPP - Integrating requirements of Industry 4.0 in TVET

1.1.2. Necessary software component (database server)

Database component including:

Storage engine

Query language

Query processor

Optimization engine

Metadata catalog

Log manager

Reporting and monitoring tools

Data utilities

Storage engine

The storage engine is the core component of the DBMS that interacts with the

file system at an OS level to store data. All SQL queries which interact with

the underlying data go through the storage engine.

Query language

A database access language is required for interacting with a database, from

creating databases to simply inserting or retrieving data. A proper DBMS must

support one or multiple query languages and language dialects. Structured

query language (SQL) and MongoDB Query Language (MQL) are two query

languages that are used to interact with the databases.

In many query languages, the query language functionality can be further

categorized according to specific tasks:

Data Definition Language (DDL). This consists of commands that can be used

to define database schemas or modify the structure of database objects.

Data Manipulation Language (DML). Commands that directly deal with the data

in the database. All CRUD operations come under DML.

Data Control Language (DCL). This deals with the permissions and other

access controls of the database.

Transaction Control Language (TCL). Command which deals with internal

database transactions.

Query processor

This is the intermediary between the user queries and the database. The query

processor interprets the queries of users and makes them actionable

commands that can be understood by the database to perform the appropriate

functionality.

https://www.bmc.com/blogs/rest-vs-crud-whats-the-difference/

184 DPP - Integrating requirements of Industry 4.0 in TVET

Optimization engine

The optimization Engine allows the DBMS to provide insights into the

performance of the database in terms of optimizing the database itself and

queries. When coupled with database monitoring tools, it can provide a powerful

toolset to gain the best performance out of the database.

Metadata catalog

This is the centralized catalog of all the objects within the database. When an

object is created, the DBMS keeps a record of that object with some metadata

about it using the metadata catalog. Then, this record can be used to:

Verify user requests to the appropriate database objects

Provide an overview of the complete database structure

Log manager

This component will keep all the logs of the DBMS. These logs will consist of

user logins and activity, database functions, backups and restore functions, etc.

The log manager ensures all these logs are properly recorded and easily

accessible.

Reporting & monitoring tools

Reporting and monitoring tools are another standard component that comes

with a DBMS. Reporting tools will enable users to generate reports while

monitoring tools enable monitoring the databases for resource consumption,

user activity, etc.

Data utilities

In addition to all the above, most DBMS software comes with additional inbuilt

utilities to provide functionality such as:

Data integrity checks

Backup and restore

Simple database repair

Data validations

Etc.

https://www.bmc.com/blogs/top-dba-shell-scripts-for-monitoring-the-database/

185 DPP - Integrating requirements of Industry 4.0 in TVET

1.1.3 Manual configruation of database server setting

You must customize the database server properties and features by setting

configuration parameters, create storage spaces, and configure connectivity.

You can automate startup.

You customize the database server properties by setting or modifying

configuration parameters in the on config file. You can use the IBM®

OpenAdmin Tool (OAT) for Informix® to monitor and update your configuration.

OAT provides suggestions for configuration parameter values to optimize your

database server configuration. The current version of IBM Informix does not

use some configuration parameters that are used in earlier versions of the

server.

If you choose to configure a database server during installation, many

configuration parameter and environment variables are set and a set of storage

spaces are created automatically. Alternatively, you can manually configure the

database server.

When you start the database server for the first time, disk space is initialized

and the initial chunk of the root dbspace is created. Any existing data in that

disk space is overwritten. Shared memory that the database server requires is

also initialized. When you subsequently start the database server, only shared

memory is initialized. Although the root dbspace is the default location of log

files and databases, you can store log files and databases in other storage

spaces to prevent the root dbspace from running out of space.

Storage space creation and management

You can create multiple storage spaces to store different types of objects,

such as, data, indexes, logs, temporary objects, instead of storing everything

in the root dbspace. The way that you distribute the data on disks affects the

performance of the database server. You can configure the database server to

both automatically minimize the storage space that data requires and

automatically expand storage space as needed. You can segregate storage

and processing resources among multiple client organization by configuring

multitenancy.

Automatic performance tuning

You can set configuration parameters and Scheduler tasks to enable the

database server to automatically adjust values that affect performance. By

default, many automatic tuning configuration parameters and Scheduler tasks

are set to solve common performance issues.

Feature configuration

You can configure the database server to support the types of optional

functionality that you need.

https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0045.htm
https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1424.htm
https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1425.htm

186 DPP - Integrating requirements of Industry 4.0 in TVET

Connectivity configuration

The connectivity information allows a client application to connect to the

database server on the network. You must prepare the connectivity

information even if the client application and the database server are on the

same computer or node.

Limit session resources

You can limit the resources available to individual sessions to more evenly

distribute system usage, and prevent resource monopolization.

Automate startup and shutdown on UNIX

You can modify startup and shutdown scripts on UNIX to automatically start

and shut down the database server.

Automate startup on Windows

You can automate startup of the database server on Windows.

1.1.4. Creation of data base under consideration of security aspects

The scope of database security

Overview

All systems have ASSETS and security is about protecting assets. The first

thing, then, is to know your assets and their value. In this chapter, concentrate

on database objects (tables, views, rows), access to them, and the overall

system that manages them. Note that not all data is sensitive, so not all requires

great effort at protection. All assets are under threat. The second thing to know

is what THREATs are putting your assets at risk. These include things such as

power failure and employee fraud. Note that threats are partly hypothetical,

always changing and always imperfectly known. Security activity is directed at

protecting the system from perceived threats. If a threat is potential, you must

allow for it to become an actuality. When it becomes actual there is an IMPACT.

Impact you can consider and plan for. But in the worst case, there will be a

LOSS. Security activity here is directed at minimising the loss and recovering

the database to minimise the loss as well as further protecting from the same

or similar threats.

Figure 168:
Database
security

https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0026.htm
https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1476.htm
https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1349.htm
https://www.ibm.com/docs/en/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0042.htm

187 DPP - Integrating requirements of Industry 4.0 in TVET

An outlined development mechanism is:

1. Document assets (what they are, what their value is).

2. Identify treats (what they are, how likely they are, what the impact is if they

occur).

3. Associate threats with each asset.

4. Design mechanisms to protect each asset appropriate to its value and the

cost of its protection, to detect a security breach against each asset, to

minimise the losses incurred and to recover normal operation.

Threats to the database

You will build your security skills from two directions. One is from the

appreciation and awareness of changing threats, and the other from the

technical remedies to them. Threats include:

 Unauthorised modification: Changing data values for reasons of sabotage,

crime or ignorance which may be enabled by inadequate security

mechanisms, or sharing of passwords or password guessing, for example.

 Unauthorised disclosure: When information that should not have been

disclosed has been disclosed. A general issue of crucial importance, which

can be accidental or deliberate Loss of availability: Sometimes called

denial of service. When the database is not available it incurs a loss

(otherwise life is better without the system!). So any threat that gives rise

to time offline, even to check whether something has occurred, is to be

avoided. The rest of this section is an overview of the categories of specific

regulatory threats to database systems.

 Commercial sensitivity: Most financial losses through fraud arise from

employees. Access controls provide both protection against criminal acts

and evidence of attempts (successful or otherwise) to carry out acts

detrimental to the organisation, whether fraud, extraction of sensitive data

or loss of availability.

 Personal privacy and data protection: Internationally, personal data is

normally subject to legislative controls. Personal data is data about an

identifiable individual. Often the individual has to be alive but the method

of identification is not prescribed. So a postal code for a home may in some

cases identify an individual, if only one person is living at an address with

the postal code. Such data needs careful handling and control. For more

information see Data Protection later in the chapter. The issues are too

extensive to be discussed here but the implications should be noted.

Personal data needs to be identified as such. Controls must exist on the

188 DPP - Integrating requirements of Industry 4.0 in TVET

use of that data (which may restrict ad-hoc queries). Audit trails of all

access and disclosure of the information need to be retained as evidence.

 Computer misuse: There is also generally legislation on the misuse of

computers. Misuse includes the violation of access controls and attempts

to cause damage by changing the database state or introducing worms

and viruses to interfere with proper operation. These offences are often

extraditable. So an unauthorised access in Hong Kong using computers in

France to access databases in Germany which refer to databases in

America could lead to extradition to France or Germany or the USA.

 Audit requirements: These are operational constraints built around the

need to know who did what, who tried to do what, and where and when

everything happened. They involve the detection of events (including

CONNECT and GRANT transactions), providing evidence for detection,

assurance as well as either defence or prosecution. There are issues

related to computer-generated evidence not covered here.

In considerations of logical access to the database, it is easy to lose sight of the

fact that all system access imposes risks. If there is access to operating system

utilities, it becomes possible to access the disk storage directly and copy or

damage the whole database or its components. A full consideration has to take

all such access into account. Most analysts would be looking to minimise

communications (direct, network and telecommunications) and isolate 5 the

system from unnecessary threats. It is also likely that encryption would be used

both on the data and the schema. Encryption is the process of converting text

and data into a form that can only be read by the recipient of that data or text,

who has to know how to convert it back to a clear message. You will find it

easier to consider security and auditing as issues separate from the main

database functions, however they are implemented. Visualise the security

server and audit servers as separate functional modules.

189 DPP - Integrating requirements of Industry 4.0 in TVET

Principles of database security

To structure thoughts on security, you need a model of security. These come

in various forms that depend on roles, degree of detail and purpose. The

major categories are areas of interest (threats, impact and loss) as well as the

actions involved in dealing with them. Security risks are to be seen in terms of

the loss of assets. These assets include:

 Hardware

 Software

 Data

 Data quality

 Credibility

 Availability

 Business benefit

Here we are primarily concerned with threats to the data and data quality but,

of course, a threat to one asset has consequential impact on other assets. What

is always important is that you are very clear on just what asset needs

protection. So as a summary: You need to accept that security can never be

perfect. There always remains an element of risk, so arrangements must be

made to deal with the worst eventuality - which means steps to minimise impact

and recover effectively from loss or damage to assets. Points to bear in mind:

6 1. Appropriate security - you do not want to spend more on security than the

asset is worth. 2. You do not want security measures to interfere unnecessarily

with the proper functioning of the system.

Security models

A security model establishes the external criteria for the examination of security

issues in general, and provides the context for database considerations,

including implementation and operation. Specific DBMSs have their own

security models which are highly important in systems design and operation.

Refer to the SeaView model for an example.

You will realise that security models explain the features available in the

DBMS which need to be used to develop and operate the actual security

systems. They embody concepts, implement policies and provide servers for

such functions. Any faults in the security model will translate either into

insecure operation or clumsy systems.

190 DPP - Integrating requirements of Industry 4.0 in TVET

Access control

The purpose of access control must always be clear. Access control is

expensive in terms of analysis, design and operational costs. It is applied to

known situations, to known standards, to achieve known purposes. Do not

apply controls without all the above knowledge. Control always has to be

appropriate to the situation. The main issues are introduced below.

Authentication and authorisation

We are all familiar as users with the log-in requirement of most systems. Access

to IT resources generally requires a log-in process that is trusted to be secure.

This topic is about access to database management systems, and is an

overview of the process from the DBA perspective. Most of what follows is

directly about Relational client-server systems. Other system models differ to a

greater or lesser extent, though the underlying principles remain true. For a

simple schematic, see Authorisation and Authentication Schematic. Among the

main principles for database systems are authentication and authorisation.

Authentication 7 The client has to establish the identity of the server and the

server has to establish the identity of the client. This is done often by means of

shared secrets (either a password/user-id combination, or shared biographic

and/or biometric data). It can also be achieved by a system of higher authority

which has previously established authentication. In client-server systems where

data (not necessarily the database) is distributed, the authentication may be

acceptable from a peer system. Note that authentication may be transmissible

from system to system. The result, as far as the DBMS is concerned, is an

authorisation-identifier. Authentication does not give any privileges for particular

tasks. It only establishes that the DBMS trusts that the user is who he/she

claimed to be and that the user trusts that the DBMS is also the intended

system. Authentication is a prerequisite for authorisation.

Authorisation

Authorisation relates to the permissions granted to an authorised user to carry

out particular transactions, and hence to change the state of the database

(writeitem transactions) and/or receive data from the database (read-item

transactions). The result of authorisation, which needs to be on a transactional

basis, is a vector: Authorisation (item, auth-id, operation). A vector is a

sequence of data values at a known location in the system. How this is put into

effect is down to the DBMS functionality. At a logical level, the system structure

needs an authorisation server, which needs to co-operate with an auditing

server. There is an issue of server-to-server security and a problem with

amplification as the authorisation is transmitted from system to system.

191 DPP - Integrating requirements of Industry 4.0 in TVET

Amplification here means that the security issues become larger as a larger

number of DBMS servers are involved in the transaction. Audit requirements

are frequently implemented poorly. To be safe, you need to log all accesses

and log all authorisation details with transaction identifiers. There is a need to

audit regularly and maintain an audit trail, often for a long period.

Access philosophies and management

Discretionary control is where specific privileges are assigned on the basis of

specific assets, which authorised users are allowed to use in a particular way.

The security DBMS has to construct an access matrix including objects like

relations, records, views and operations for each user - each entry separating

create, read, insert and update privileges. This matrix becomes very intricate as

authorisations will vary from object to object. The matrix can also become very

large, hence its implementation frequently requires the kinds of physical 8

implementation associated with sparse matrices. It may not be possible to store

the matrix in the computer’s main memory.

1.2 Structure of database

Database structure: the building blocks of a database

The next step is to lay out a visual representation of your database. To do that,

you need to understand exactly how relational databases are structured.

Within a database, related data are grouped into tables, each of which consists

of rows (also called tuples) and columns, like a spreadsheet.

To convert your lists of data into tables, start by creating a table for each type

of entity, such as products, sales, customers, and orders. Here’s an example:

Each row of a table is called a record. Records include data about something

or someone, such as a particular customer. By contrast, columns (also known

as fields or attributes) contain a single type of information that appears in each

record, such as the addresses of all the customers listed in the table.

192 DPP - Integrating requirements of Industry 4.0 in TVET

First Name Last Name Age ZIP Code

Roger Williams 43 34760

Jerrica Jorgensen 32 97453

Samantha Hopkins 56 64829

Table 5: Data base

To keep the data consistent from one record to the next, assign the appropriate

data type to each column. Common data types include:

CHAR - a specific length of text

VARCHAR - text of variable lengths

TEXT - large amounts of text

INT - positive or negative whole number

FLOAT, DOUBLE - can also store floating point numbers

BLOB - binary data

Some database management systems also offer the Autonumber data type,

which automatically generates a unique number in each row.

For the purposes of creating a visual overview of the database, known as an

entity-relationship diagram, you won’t include the actual tables. Instead, each

table becomes a box in the diagram. The title of each box should indicate what

the data in that table describes, while attributes are listed below, like this:

Finally, you should decide which attribute or attributes will serve as the primary

key for each table, if any. A primary key (PK) is a unique identifier for a given

entity, meaning that you could pick out an exact customer even if you only knew

that value.

193 DPP - Integrating requirements of Industry 4.0 in TVET

Attributes chosen as primary keys should be unique, unchanging, and always

present (never NULL or empty). For this reason, order numbers and usernames

make good primary keys, while telephone numbers or street addresses do not.

You can also use multiple fields in conjunction as the primary key (this is known

as a composite key).

When it comes time to create the actual database, you’ll put both the logical

data structure and the physical data structure into the data definition language

supported by your database management system. At that point, you should also

estimate the size of the database to be sure you can get the performance level

and storage space it will require

1.2.1. Introduction to relational database model

Relational Model (RM) represents the database as a collection of relations. A

relation is nothing but a table of values. Every row in the table represents a

collection of related data values. These rows in the table denote a real-world

entity or relationship.

The table name and column names are helpful to interpret the meaning of

values in each row. The data are represented as a set of relations. In the

relational model, data are stored as tables. However, the physical storage of

the data is independent of the way the data are logically organized.

The easiest way to understand a database is as a collection of related files.

Imagine a file (either paper or digital) of sales orders in a shop. Then there's

another file of products, containing stock records. To fulfil an order, you'd need

to look up the product in the order file and then look up and adjust the stock

levels for that particular product in the product file. A database and the software

that controls the database, called a database management system (DBMS),

helps with this kind of task

1.2.3. Getting to know the Entity Relationship Diagram for database

design and documentation

Entities

Entities are the real-world elements in your system. You could call them the

nouns of your database. An ERD shows entities as a rectangle:

For instance, if you’re designing a database for an online store, the entities are

the product that make up the inventory. Other core entities in your store

database will be users and orders.

194 DPP - Integrating requirements of Industry 4.0 in TVET

Relationships

Relationships are the verbs of your ERD and describe how entities are

associated with each other. An ERD shows relationships as a labelled diamond

on the lines connecting entities:

An online store database has one type of relationship between product and

order, and a slightly different relationship between user and order.

Attributes

Attributes are properties or characteristics of entities. You can think of them as

adjectives describing the entities in your database. An ERD shows attributes as

ovals connected to the relevant entity:

The entities in your online store database will have lots of attributes. To list

just a few:

products – name, price and description

users – name, password, address and email address

orders – number of items, date, total amount

2. Handling of databases on server level

2.1. Database manipulation

2.1.1. Creation of a database on a database server

You create a database server by setting mandatory database server properties

and then starting the database server.

To create a database server:

Configure the mandatory properties of the database server.

Set configuration parameters in the onconfig file.

Add connectivity information in the sqlhosts file and other connectivity files.

Set environment variables in your environment.

Tip: On Windows operating systems, you can use the Server Instance Manager

to configure the mandatory properties of the database server instead of editing

the onconfig and sqlhosts file and setting environment variables.

195 DPP - Integrating requirements of Industry 4.0 in TVET

2.1.2. Correct creation of table and database entry for relational database

We can create, read, update and delete (the basic functions of any database)

the information in our relational database using a Relational Database

Management System (RDBMS). Example of RDBMSs

include Oracle, Microsoft SQl Server, MySQL, and PostgreSQL, among many

others. Each of these have their pros and cons (and like everything coding-

adjacent, their online hyper-partisans), and SQL is not implemented in exactly

the same way in each of them. The concepts are the same, but

the syntax and keywords may be slightly different, so it is not usually possible

to use SQL code written for PostgreSQL in Microsoft SQL Server, for example,

without making some modifications.

2.1.3. Getting to know the basic command for manipulating database

All command documentation outlined below describes a command and its

available parameters and provides a document template or prototype for each

command. Some command documentation also includes the

relevant mongosh helpers.

To run a command against the current database, use db.runCommand():

db.runCommand({ <command> })

To run an administrative command against the admin database,

use db.adminCommand():

db.adminCommand({ <command> })

NOTE

For details on specific commands, including syntax and examples, click on the

specific command to go to its reference page.

2.1.4. Excution of join commands to join table within database

We've covered a lot of content in this chapter, from exploring how joins work at

a conceptual level, through working with different types of joins, and finally to

useful techniques such as aliasing and subqueries.

One of the most important things to remember about how joins work is that we

set a condition that compares a value from the first table (usually a primary key),

with one from the second table (usually a foreign key). If the condition that uses

these two values evaluates to true, then the row that holds the first value is

joined with the row that holds the second value.

Let's quickly recap on some of the different types of join we can use:

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://techterms.com/definition/rdbms
https://www.oracle.com/database/
https://www.microsoft.com/en-gb/sql-server
https://www.mysql.com/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.w3schools.com/sql/sql_syntax.asp
https://www.w3schools.com/sql/sql_ref_keywords.asp
https://docs.mongodb.com/mongodb-shell/#mongodb-binary-bin.mongosh
https://docs.mongodb.com/manual/reference/method/db.runCommand/#mongodb-method-db.runCommand
https://docs.mongodb.com/manual/reference/method/db.adminCommand/#mongodb-method-db.adminCommand

196 DPP - Integrating requirements of Industry 4.0 in TVET

Join

Type
Notes

INNER Combines rows from two tables whenever the join condition is met.

LEFT
Same as an inner join, except rows from the first table are added to

the join table, regardless of the evaluation of the join condition.

RIGHT

Same as an inner join, except rows from the second table are

added to the join table, regardless of the evaluation of the join

condition.

FULL A combination of left join and right join.

CROSS

Doesn't use a join condition. The join table is the result of matching

every row from the first table with the second table, the cross

product of all rows across both tables.

Table 6: Joint functions

When using joins, sometimes our queries can get unwieldy, especially when

we're dealing with 2 or more JOINs. To better manage this we can alias table

and column names to shorten our query. We can also use aliasing to give

more context about the query results.

Finally, the result from a join query can sometimes be obtained using different

methods. Subqueries offer another method for us to query the database and

retrieve the same results of similar results, as if we had used a JOIN clause.

197 DPP - Integrating requirements of Industry 4.0 in TVET

3. Userprogramme with databases

3.1. Getting to know classes and function to connect database servers

A class is a blueprint of an object. You can think of a class as a concept, and

the object is the embodiment of that concept. You need to have a class before

you can create an object. So, let's say you want to use a person in your

programme. You want to be able to describe the person and have the person

do something. A class called 'person' would provide a blueprint for what a

person looks like and what a person can do. To actually use a person in your

programme, you need to create an object. You use the person class to create

an object of the type 'person.' Now you can describe this person and have it do

something.

Classes are very useful in programming. Consider the example of where you

don't want to use just one person but 100 people. Rather than describing each

one in detail from scratch, you can use the same person class to create 100

objects of the type 'person.' You still have to give each one a name and other

properties, but the basic structure of what a person looks like is the same.

A function is a combination of instructions that are combined to achieve some

result. A function typically requires some input (called arguments) and returns

some results. For example, consider the example of driving a car. To determine

the mileage, you need to perform a calculation using the distance driven and

the amount of fuel used. You could write a function to do this calculation. The

arguments going into the function would be distance and fuel consumption, and

the result would be mileage. Anytime you want to determine the mileage, you

simply call the function to perform the calculation.

3.2. Creating user programmes to create databases on database server

B1: Creating a database

Log in to your OVHcloud Control Panel and select Web Cloud in the top

navigation bar. Click Databases in the services bar on the left-hand side, then

choose the SQL instance concerned. Click on the Databases tab, then on Add

database.

Fill in the fields by following the criteria listed. You can create a user directly

by ticking the Create User box.

Database name (obligatory): this will be your database’s name.

Username: This is name of the user that can log in to your database and

perform requests (only applicable if the Create User box is ticked).

https://ca.ovh.com/auth/?action=gotomanager&from=https://www.ovh.com.au/&ovhSubsidiary=au

198 DPP - Integrating requirements of Industry 4.0 in TVET

Rights (only if the box is ticked): the permissions that will be associated with

the user on the database. For standard usage, select Administrator. The

permissions can be modified as follows.

Password/Confirm password (only if the box is ticked): enter a password, then

confirm it.

Finally, click Confirm.

B2: Adding a user

To use an OVHcloud database server, you need to create users with specific

rights to connect to a database.

Log in to your OVHcloud Control Panel and select Web Cloud in the top

navigation bar. Click Databases in the services bar on the left-hand side, then

choose the database name concerned. Next, switch to the Users and

rights tab and click Add user.

Enter a “username” and a “password”, then click Confirm.

3.3. Implementation of user programme to store and read on database

server

Managing user rights

To allow a user to perform actions on a database, it is necessary to assign

permissions to the user.

Log in to your OVHcloud Control Panel and select Web Cloud in the top

navigation bar. Click Databases in the services bar on the left-hand side, then

choose the database name concerned. Next, switch to the Users and rights tab.

Click on the ... button to the right of the user concerned, then on Manage rights.

In the left-hand column, Database, you will see a list of the databases on your

database server.

The 3 types of permissions proposed are described below:

Administrator: Authorisation of the following

queries: Select/Insert/Update/Delete/Create/Alter/Drop

Reading/Writing: Authorisation of the following

queries: Select/Insert/Update/Delete

Read: Authorisation of Select queries

None: No database rights

The distribution of rights mentioned above is unique to OVHcloud. This will

allow a user with Administrator rights to use DLL (Data_Definition_Language)

and DML (Data_Manipulation_Language), while a user

with Reading/Writing rights will only use DML.

https://ca.ovh.com/auth/?action=gotomanager&from=https://www.ovh.com.au/&ovhSubsidiary=au
https://ca.ovh.com/auth/?action=gotomanager&from=https://www.ovh.com.au/&ovhSubsidiary=au

199 DPP - Integrating requirements of Industry 4.0 in TVET

3.4. Database user Programme

Exercise 1: Requirements: Book and authors

Below a ERM model of a book management system is displayed. Your task is

to create the Relational Data Model including all necessary attributes. Also

mark primary and foreign keys.

Figure 169: ERM model of a book management system

Relational Data Model:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

200 DPP - Integrating requirements of Industry 4.0 in TVET

Exercise 2: Requirements: Art

You are commissioned to design a database in which the most important

works of art and their location can be managed. Previously, all information

was stored in a single table. The tables design dose not fulfil any requirements

necessary for a safe usage of relational data base software. A sample of the

table is listed below.

 In a first step a entity relationship diagram shall be drawn to display all

entitys and their relationships.

 In a second step the table shall be brought in the N1 form.

Table:

Location Country Artist Title

Prado, Madrid Spain

Peer Paul

Rubens Die drei Grazien

Louvre, Paris France

Leonardo Da

Vinci Mona Lisa

Museum of Modern Art, New

York City USA

Vincent van

Gogh 'The Starry Night'

Upper Belvedere museum,

Vienna Austria Gustav Klimt 'The Kiss'

Mauritshuis, The Hague

Netherland

s

Johannes

Vermeer

'Girl With a Pearl

Earring'

Table 7: Artwork database template

ERM

………………………………………………………………………………………

………………………………………………………………………………………

Table in N1 form:

………………………………………………………………………………………

………………………………………………………………………………………

https://www.belvedere.at/en/visit/upper-belvedere
https://www.belvedere.at/en/visit/upper-belvedere
https://www.mauritshuis.nl/en/

201 DPP - Integrating requirements of Industry 4.0 in TVET

Exercise 3: Requirements: Car

A car insurance company plans to create a database driven customer tracking

system. Sofar customer data was stored without consideration of relational

database models. As a first attempt you created a ER model to show the

relationship of all entity’s and attributes. Explain the customer the tems, entity,

relationship and attribute. Explain the customer how the ERM works

ERM

Figure 170: ERM model show all the relationship

Customer explanation:

………………………………………………………………………………………

………………………………………………………………………………………

202 DPP - Integrating requirements of Industry 4.0 in TVET

Car Table in N1

Requirement

The customer demands a database that fullfills all requirements of N1 form.

Further the customer wants to know what N1 form is and how it will benefit

him.

Relational database model in N1:

………………………………………………………………………………………

………………………………………………………………………………………

Answers to question:

………………………………………………………………………………………

………………………………………………………………………………………

Car Table in N2

Requirements:

You as experienced database engineer persuaded the customer to bring the

database into a higher normalized form. Explain the customer the necessary

steps and differences to N1 form if necessary.

Relational databse model:

………………………………………………………………………………………

………………………………………………………………………………………

Differences of N2 to N1 form

………………………………………………………………………………………

………………………………………………………………………………………

203 DPP - Integrating requirements of Industry 4.0 in TVET

Car Table in N3 Form

Requirements:

In a final step you decide to bring the database into N3 form. Explain the

customer why I is necessary. Show the customer the finalized relational

database model.

Relational database model:

………………………………………………………………………………………

………………………………………………………………………………………

 Differences of N3 to N2 form

………………………………………………………………………………………

………………………………………………………………………………………

Illustration 6: Cloud data storage and
secure data storage cloud server

204 DPP - Integrating requirements of Industry 4.0 in TVET

Project: Database Systems: Data acquisition in I4.0 Setup

Introduction

All I4.0 applications have one base product which they rely on, which his data.

Production data is already most valuable to companies for optimization and

quality measures. Yet company’s around the world still have classical

production plants without any or only proprietaries data acquisition possibilities.

One of the big challenges in future will be to identify and measure production

and environmental data and store it. For companies to produce their new

product “data” and to lift their productions into the realm of I4.0 it is mandatory

to create awareness and skill in measuring important physical values and

sending them via networks to storage stations. Relational database systems

help to store vast amounts of data in a secure and efficient way. Further they

permit a easy to access and maintain solution. In this project a full-scale data

acquisition and storage scenario using databases will be implemented.

Requirements:

Experience in object-oriented programming

UML

 Use case diagram

 Class diagram

 Sequence diagram

Flow chart

Software testing

Microcontroller programming

 Hardware control

 Reading in sensors

 Create measurement programmes

Communication methods in computer networks

Finished theoretical and practical part of course LC3

Additional information – for teachers

If other process stations are used then described below adapt the description

to your existing system. This project was written in a general hardware

independent way in terms or used sensors. Some of the exercises will provide

tasks to identify sensor parameters from the datasheet. These need to be

adjusted to the used hardware. Further only use sensors where you can also

provide a datasheet.

205 DPP - Integrating requirements of Industry 4.0 in TVET

Basic setup

There are two classical production stations. Both production stations are

functional and operate without modern ways of data acquisition. Today

production data is of great value for every company and delivers the potential

for optimization. It will be your task to upgrade the classical production stations

into a I4.0 set up. Since selecting the right sensors, creating measurement

programmes and sending the data via computer networks to server stations is

the basis of I4.0 this project main focus will be on setting up a functional base

framework. In this project the entire workflow from system and requirement

identification up to practical implementation and testing will be done. The Basic

setup will be to extend an existing processing station by measuring physical

values. A combination of sensors will be used to count the amount of produced

goods. Further a database system shall be set up to store the measured values.

A server sided programme shall receive the values via network communication

and store them securely in a relational database.

CPSi 4.0

The process station CPSi is displayed in below. The process station can be

controlled via microcontroller and system buttons. In this example only the

control with system buttons shall be considered. When a system button is

pressed the processstation starts by ejecting a cube from the cube magazine.

The cube is tested in several stations. After the final station the cube is either

ejected with a pneumatic cylinder or passed through.

Figure 171: CPS i4.0 training system (front view)

206 DPP - Integrating requirements of Industry 4.0 in TVET

a Microcontroller (XDK) i Capacitive sensor

b System buttons j Position sensor (on contour

cylinder)

c Emergency stop k Inductive sensor

d WLAN router l Light barrier

e Cube magazine m Pneu. cylinder and 5/2

directional control valve

f XM22 (PLC) n RFID antenna

g Conveyor belt o Collecting ramp

h Light conductor

Table 8: Explanation for Figure 171

System description

Before the test, the cubes are stored in

a magazine (fig. 8 - 0). The magazine

is manually refilled with new cubes.

The buttons can be used to select a

cube type and start an order. At the

height of the second cube in the

magazine, there is a mechanical

switch. The switch triggers when no

cube is pressed against it

(NC - normally closed). Provided that:

there are at least 2 cubes in

magazine,

emergency stop released,

light conductor unobstructed,

conveyor belt at a standstill,

all cylinders in basic position,

... the valve operates the magazine.

Figure 172: Cubes at start
under RFID antenna

207 DPP - Integrating requirements of Industry 4.0 in TVET

The valve is located on the back of the

magazine together with a pneumatic

cylinder. The cylinders are operated

using compressed air with at least 1 bar.

The compressed air is distributed to the

valves by a compressed air distribution

system. Depending on the valve

position, the valves feed the compressed

air into the cylinder chambers. The

compressed air supply to the cylinder

chambers can be regulated via throttles

at the inlet points.

When the piston is extended, it pushes one cube half onto the conveyor belt.

The position of the cylinders is detected via reed contacts.

The switches trigger with magnetic materials. There are two reed contacts on

the magazine cylinder which detect the basic position and the working position

of the piston. A DC motor is flange-mounted on the other end of the conveyor

belt. The motor drives the conveyor belt.

The direction of rotation is determined by two relays. Before the conveyor belt

starts, the magazine cylinder returns to the basic position and the RFID antenna

above the cube half writes a code number for the cube type on the RFID tag in

the cube.

The cubes move in the process direction from right to left. They pass several

stations on the conveyor belt. Depending on the process at the station, the

conveyor belt is stopped or the workpiece is evaluated as it passes through.

Figure 173: Magazine cylinder with
two reed contacts

208 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 174: CPSi4.0 workpiece positions

Stations (to fig. 174):

RFID antenna: Code number is written on the tag in the cube.

Light conductor: Detects cube position (lateral)

Capacitive sensor: Detects cube position (top)

Contour cylinder: Piston moves on workpiece and the position sensor

measures the distance covered - inference to orientation (base / cover)

Inductive sensor: Detects metallic material - inference to material

Light barrier: Detects bright objects - inference to colour

RFID antenna: Code number is read from tag

Ejection cylinder: Eject position for wrong cubes

209 DPP - Integrating requirements of Industry 4.0 in TVET

The workpiece first passes a light conductor and then a capacitive sensor. The

workpiece is detected laterally or from above. Through the feedback, the

programme knows when and where a cube is on the conveyor belt. After the

sensors have been triggered, the conveyor belt stops so that the workpiece is

positioned under the contour cylinder. The redundant detection ensures that the

cube half is positioned exactly.

Figure 175: Cube detected by capacitive sensor

210 DPP - Integrating requirements of Industry 4.0 in TVET

If the conveyor belt stops here, the cylinder piston extends. This cylinder is

controlled by a pneumatic valve for closed-loop control (fig. 2 - h). With a base

part, the cylinder extends completely. A reed contact will detect this position.

With a cover part, the piston presses on the cube. This process is limited in

time. After the time has elapsed, the piston retracts. The distance covered is

recorded by a position sensor. This sensor is also mounted on the cylinder

housing. The workpiece orientation is deduced from the return value.

Figure 176: Contour check

cylinder with position sensor

for

base part (above) and cover

part (below)

211 DPP - Integrating requirements of Industry 4.0 in TVET

If the piston is in the basic position, the conveyor belt continues to move. The

workpiece passes an inductive sensor and a light barrier. The inductive sensor

only responds to metallic objects. The light barrier detects bright objects (white

or silver). An illuminated LED at the top of the sensors indicates that the sensors

have detected something. The conveyor belt does not have to stop here. The

information of orientation, material and colour are saved.

Figure 177: Inductive

sensor with

aluminum cube

(above)

and light barrier with

plastic cube (below)

212 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 178: Light conductor stops cube under RFID antenna (above)

and wrong cube in ejection position (below)

The workpiece stops at the second light conductor. This is positioned opposite

the second RFID antenna. The code number on the tag (cube type) is compared

with the saved properties. If there is a match, the cube half moves to the gray

mark (end of conveyor belt). In the event of an error, the conveyor belt reverses

to the ejection cylinder and is pushed onto the ejection ramp. If there are enough

cubes in the magazine, the process is automatically repeated.

213 DPP - Integrating requirements of Industry 4.0 in TVET

Bottling Station

The bottling station is a purely mechanical station. Sofar there are no means of

data acquisition present. The bottling station takes bottles, cleans them in the

cleaning station, fills them in the filling station and finally puts the cap on the

bottle in the capping station.

Figure 179: Bottling station full setup, cleaning(left),

filling (middle) and capping (right)

After the bottling process has finished new bottles need to be put at the input

stream to restart the process. The cleaning station is the first process entered

by a bottle in the entire bottling station. The bottles in the stations instream

position will be mechanically gripped on their head, moved upwards and

cleaned. The entire cleaning process will be conducted within one rotation of

the cleaning station. After cleaning has finished the bottle is released in the out-

stream position. There is no check for correct placement of bottles on the

instream position, nor at the out-stream position. Therefore, it is not possible to

detect bottles which got flipped over. Which in term means all bottles have to

be placed correctly at the conveyor belt before the process is started.

214 DPP - Integrating requirements of Industry 4.0 in TVET

The filling station mechanically takes in a bottle and mounts it on a predefined

position. If a bottle gets mounted the filling valve will be opened and liquid will

be filled inside the bottle. The filling process will be automatically initiated if a

bottle is at the input position and the rotation process is initiated. After the

rotation process has finished and the bottle is at the stations out stream position

the valve will be automatically sealed again. On the in stream position its

assumed that the bottles already enter sequentially and are positioned correctly.

There is no testing or ejection system if a bottle has fallen over.

Figure 180: Cleaning station

215 DPP - Integrating requirements of Industry 4.0 in TVET

After the bottles have been cleaned and filled with water they will be passed to

the final station, the capping station. Here the bottles again will be picked

sequentially. In one process they will be rotated and a cap will be mounted at

the bottles head. Afterwards the bottles will be passed to the stations down

stream position. There is no checking if the cap was placed correctly on the

bottle head. Neither will here be any checks if the bottles arrive in correct

position in the in-stream position. Also, after the bottles have been capped there

is no check if the bottles are positioned correctly at the out-stream position.

Further the caps need to be manually filled in the caps storage

All three stations deliver possilbitys to mount sensors and measure ambient

environmental values.

Figure 181: Filling station

216 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 182: Capping station

Hardware selection – general microcontroller

Object awareness can be measured via different types of sensors. One

possibility is the usage of a ultrasonic sensor. These types of sensors are used

to measure distances. Their benefit is that they can be used for detection on

most surfaces. Depending on the area of application it can be a disadvantage

that their detection radius is cone shaped, which can lead to crosstalk

phenomena. Further a infrared (IR) sensor will be used. Their benefit is that

they have a point shaped detection mechanism. Their disadvantage is that

certain surfaces and materials do not reflect the IR signals which causes the

sensors to not be able to detect the object.

217 DPP - Integrating requirements of Industry 4.0 in TVET

Identify sensor parameters. In a first step identify the ultrasonic sensor in the

datasheet and write its type down:

Ultrasonic sensor Accelerometer

Ultrasonic sensors have several important parameters. Look up in the

datasheet and fill out the missing parameters in the table. Make sure to only

write the parameters of your sensor:

Parameter Value

Max range

Min range

Max range

To measure the range with a ultrasonic sensor certain steps are necessary. The

steps are written in the datasheet. Summarize all steps here:

Range detection on ultrasonic sensors works via time measurement. To convert

the measured time into a distance an equation is provided in the datasheet.

Write down the equation here:

218 DPP - Integrating requirements of Industry 4.0 in TVET

Measurement programme – basic microcontroller

After selecting the hardware, a simple measurement programme shall be

implemented.

The measurement programme shall read in the ultrasonic sensors values and

the IR sensors input values and print them directly on the console. In this case

we assume the IR sensor delivers a binary signal if an object got detected.

Every measurement shall be taken with a interval of 5 seconds. Enter a

screenshot of the console output in the table below. Upload your code and a

screenshot of the console output.

The required output shall be:

“Ultrasonic sensor: XXXcm”

“IR sensor detection: XXX”

Console output

Measurement programme – Bosh XDK

The bosh XDK is a robust

microcontroller platform with a wide

sensor array. It is commonly used in

industrial applications especially for

data tracking. The bosh XDK delivers a

wide sensor array, a integrated wifi

module, a sd card reader to store data

on a memory card, freely configurable

buttons and a usb connector to connect

the XDK to a PC for flashing new

programmes and directly outputting

values in the console of its own IDE.

Figure 183: Example of Databoads

219 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 184: Compare the
differences between Reports and
Dashboards

The bosh XDK further permits its user

to access many types of sensors. Users

can measure acceleration,

temperature, humidity, air pressure and

many more. Further the XDK uses

“FreeRTOS” as realtime operating

system. This ensures that precicly

timed measurements with defined

intervals are possible.

Further bosh uses a own eclipse based IDE called XDK-Workbench. This IDE

gives the user the choice to either programme the XDK directly with C, or to use

MITA programming language. MITA programming language was developed to

lessen the burden of creating I4.0 applications without knowledge of embedded

programming. The website: https://developer.bosch.com/web/xdk/getting-

started#1 is provided by bosh and has sample code for reading in sensor

values. Part of this task is to read through the descriptions and sample codes

and reuse them to create a working programme.

The task of this section is to create a measurement programme that reads in

the sensor values of the:

Accelerometer

Humidity sensor

Temperature sensor

Pressure sensor

The read in values shall be outputted on the console of the XDK –

Workbench. The project shall be programmed in MITA programming

language. Measurements shall be done every 3 seconds. The desired console

output shall be as follows:

Acceleration in X: XXXg

Acceleration in Y: YYYg

Acceleration in Z: ZZZg

Humidity: XXX%

Temperature: XXX°C

Air pressure: XXXkPa

Enter a screenshot of the console output in the table below. Upload your code

and a screenshot of the console output.

https://developer.bosch.com/web/xdk/getting-started#1
https://developer.bosch.com/web/xdk/getting-started#1

220 DPP - Integrating requirements of Industry 4.0 in TVET

Console output:

Sensor placement and wiring

After the test programmes were successfully completed the sensors can be

placed a desirable location. For the bottling station the sensors have to be

placed in a way that the ultrasonic sensor measures if a bottle is present from

the side. The IR sensor shall be used to measure if a cap was put on the bottle.

Find a valid location for the sensors to fullfill this requirement. On the CPSi 4.0

station the same procedure shall be conducted. Instead of bottles the position

of the blocks shall be figured out. Make sure to adjust the IR sensor so it can

detect if the block has the hole on the upside or not. Find a valid location for the

sensor placement and document your decision with a picture. Further describe

in your own words why you choose this location in the table below:

Picture Documentation

221 DPP - Integrating requirements of Industry 4.0 in TVET

Communication protocol

After the sensors and microcontroller got a valid location for measurement the

communication protocol shall be implemented. After implementing one of the

solutions take a picture of the console output of the pc and print it in the field

below.

Further upload the console output and all code.

Common microcontroller

The before described sensors of the microcontroller shall be used to create a

measurement programme. As communication protocol the publisher and

subscriber method using the MQTT protocol shall be used. In this example all

measured data shall be converted to a JSON object. This object shall be passed

over MQTT. Therefore, there will only be one topic to send the data. The

ultrasonic data shall be named “Distance”, the IR sensor data shall be named

“Detected”.

Steps:

1. Setup a broker on the computer and run the broker

2. Use your measurement programme for the microcontroller to read in the

sensor values. Let the microcontroller read in with an interval of 500 ms

3. Save all measured values in a JSON object, choose the names

according to the requirements

4. Include the necessary libraries on the microcontroller and create the

topic to be published to.

a. Topic name

i. Measurement/States

5. Include the necessary libraries on the computer and subscribe to the

topic where the sensor values are published at

6. Print the published values on the computers console

7. Test different sensor interval times

Console output

222 DPP - Integrating requirements of Industry 4.0 in TVET

XDK

The XDK offers the possibility to transmit data via publisher and subscriber

method using the MQTT protocol. Since the XDK offers a great variety of

sensors ultiple sensors shall be transmitted to the computer. In this example all

easured data shall be converted to a JSON object. This object shall be passed

over QTT. Therefore, there will only be one topic to send the data. The sensor

data shall be named as follows:

For acceleration

 AccelX

 AccelY

 AccelZ

For humidity

 Humidity

 For temperature

Temperature

 For Pressure

 o Pressure

Steps:

1. Setup a broker on the computer and run the broker

2. Use your measurement programme for the microcontroller to read in the

sensor values. Let the microcontroller read in with an interval of 3 seconds

3. Include the necessary libraries on the microcontroller and create the topic to

be published to.

a. Topic name

i. MeasurementXDK/ States

4. Include the necessary libraries on the computer and subscribe to the topic

where the sensor values are published at

5. Print the published values on the computers console

Console output

223 DPP - Integrating requirements of Industry 4.0 in TVET

Create a ERM diagram

After the measurement and communication systems got set up the relational

database system can be started. As a first step a ERM diagram shall be created.

For the ERM diagram it is necessary to model all parts of the system. The

Database shall include the stations name, the sensor names, sensor types, the

sensor values, the microcontroller type and the time stamp when the

measurement was taken. All names have to be in english. Draw the ERM

diagram below:

Setup database

The ERM diagram is the basis of every database. After it was created Create

the database itself. The database name shall be either “Bottling Station” or

“CSPi4.0” depending on which station you work. All used names shall match

the ERM diagram. All tables have to be in 3rd normal form, if necessary

normalize the tables. Upload and include a picture of all created tables and

rows. Also upload the picture.

Table

224 DPP - Integrating requirements of Industry 4.0 in TVET

Database programme

After the database is set up and the measurement programme works it is

ossible to store the measured data inside the database.

Writing to database

Whenever the programme receives a value over MQTT all received sensor

values plus the current time stamp of reception shall be saved into the

database. Ensure that the right tables and values are send to the database.

Further ensure that the time stamp has the right format to fit with your used

database. Below a small list of necessary SQL commands is presented. It is

also necessary to provide a library to send SQL commands to your database.

Test your setup by creating a programme that reads in values for 5 minutes and

save the measured values to the database. Before starting your measurement,

programme ensure the stations are running. Upload the code.

SQL commands:

Inserting values into a table

INSERT INTO tableName

VALUES (value1, value2, value3, ...);

Reading row values from table

SELECT colName FROM tableName

Reading from database

After completion load all stored sensor values from the database. Create a

visualization of the sensor values. Put every sensor value into a own diagram.

As tile choose the sensor name. Insert the diagrams below. Upload the code

and a screenshot of the diagrams

225 DPP - Integrating requirements of Industry 4.0 in TVET

TRAINING UNIT 4:

DATA VISUALISATION WITH DASHBOARDS

Objective: The trainees:

- Understand the basics of dashboards

- Distinguish the types of dashboards, distinguish the similarities and

differences of dashboards and reports

- Understand the steps to design a complete dashboard

- Know the limits of a dashboard

- Understand the process to create a dashboard

- Can create simple dashboards

- Can create a visualization programme

Content:

1. Dashboards basics

1.1. Defining the usage and tasks of dashboards

1.1.1. What is a data dashboard?

A data dashboard is a tool that provides a centralized, interactive means of

monitoring, measuring, Analysing, and extracting relevant business insights

from different datasets in key areas while displaying information in an

interactive, intuitive, and visual way.

They offer users a comprehensive overview of their company’s various internal

departments, goals, initiatives, processes, or projects. These are measured

through key performance indicators (KPIs), which provide insights that help to

foster growth and improvement.

Online dashboards provide immediate navigable access to actionable analytics

that has the power to boost your bottom line through continual commercial

evolution.

226 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 185: Compare the similarity between Reports and Dashboards

To properly define dashboards, you need to consider the fact that, without the

existence of dashboards and dashboard reporting practices, businesses would

need to sift through colossal stacks of unstructured data, which is both

inefficient and time-consuming. Alternatively, a business would have to ‘shoot

in the dark’ concerning its most critical processes, projects, and internal

insights, which is far from ideal in today’s world.

1.1.2. What Is The Purpose Of A Data Dashboard?

As mentioned earlier, a data dashboard has the ability to answer a host of

business-related questions based on your specific goals, aims, and strategies.

By taking raw data from a number of sources and consolidating it before

presenting it in a tailored, customized visual way, data dashboards can help

make sense of your company’s most valuable data and empower you to find

actionable answers to your most burning business questions.

Through linking with specific KPIs that align with your business goals, you can

drill down into specific pockets of information, creating benchmarks, and

measuring your success on a continual basis.

In doing so, your business will be data-driven, and as a direct result – more

successful. To find out more about dashboards and key performance indicators,

explore our ever-expanding collection of various business-boosting KPI

examples and templates.

https://www.datapine.com/dashboard-reporting
https://www.datapine.com/kpi-examples-and-templates/
https://www.datapine.com/kpi-examples-and-templates/

227 DPP - Integrating requirements of Industry 4.0 in TVET

1.2. Theoretical foundations for the creation of web applications

In order to be able to make empirical observations, one needs theoretical

concepts that can be applied. We are utilizing a concept of information based

on different subprocesses of information that take place in social life and are

technically supported by ICTs. These are cognitive, communicative, and co-

operative processes.

- Cognitive processes (including emotional ones) are individual, or ,in case

of any supraindividual social agency named a subject, intra-subjective

processes of generating information.Human-Computer Interaction as

discipline deals with how cognition is being supported and influenced by

using ICTs.

- Communicative processes are interactive, that is, among individuals or

other social subjects.Due to the coupling of cognitive subjects,

communicative processes can be understood as information generation

processes. Computer-mediated communication deals with these

processes supported by ICTs

- Cooperative processes are integrative, concern the supra-individual

level and let information emerge from synergetic effects of

communicating subjects. Originally, Computer-Supported Cooperative

Work researched this topic from the perspective of the involvement of

ICTs.

Nowadays, this approach takes advantage from research in collective

intelligence, wisdom of the crowds and so on.

1.3. Comparison of different creation methods

1.3.1. What is a report?

Reports can be a presentation of corresponding charts and other

visualizations, or they can be a large set of charts and visualizations that may

or may not directly relate. A report is meant to be used to gather detailed

intelligence on the operations within an organization, thus a report can be either

very broadly covering a wide scope of related information, or narrowly focusing

on details of a single item, purpose, or event. All of this information, while

presented in a report, is meant to be a snapshot in time.

In a data visualization platform, like Chartio, a report can even be built in the

same environment as a dashboard leading to even more confusion about the

difference between the report and dashboard. This report might even have the

look and feel of a dashboard, in this case you are likely creating a “dashport” of

sorts. Reports can also be series of dashboards that may be interrelated to each

https://chartio.com/product/

228 DPP - Integrating requirements of Industry 4.0 in TVET

other and as a whole show more of the information needed to understand the

status of things. These groups of dashboards can either be linked directly or

grouped in the software’s library, categorization, or organization technology.

Depending on the number of I/O modules that the PLC owns, they may be in

the same enclosure as the PLC or in a separate enclosure. Some small PLCs

called nano/micro PLCs usually have all their parts including power, processor,

etc. in the same enclosure.

1.3.2 How do Reports and Dashboards differ?

First, a report contains much more detailed information. Where a dashboard

might only provide a CEO with information on how the entire company’s sales

are progressing, a corresponding report will give the CFO or VP of Sales the

ability to see how each sales region, or even sales person is performing and

make leadership decisions. Just like responsibility, data will get more granular

and more into the minutiae as the organizational hierarchy goes down The C

Suite might be interested in the detailed data, but for seeing a snapshot of high

level information, the dashboard is the desired mode.

Second, a Report is much longer than a dashboard. Not only in the amount of

detail, but also visually. Tables and charts that live within a report can take up

many pages of a printed medium, and can even be books or many volumes of

books. In the electronic mediums, a report will likely require the reader to scroll

through many screens or click from page to page.

This is important because of the first of noted Data Visualization Professor

Stephen Few’s common mistakes of Information Dashboard Design,

“Exceeding the boundaries of a single screen.”

229 DPP - Integrating requirements of Industry 4.0 in TVET

Few describes it in this way. “My insistence that a dashboard should confine its

display to a single screen with no need for scrolling or switching among multiple

screens, might seem arbitrary and a bit finicky, but it is based on solid and

practical rationale. After studying data visualization and visual perception for a

while, we discover that something powerful happens when we see things

together, all within eye span. Likewise, something critical is compromised when

we lose sight of some data by scrolling or switching to another screen to see

other data.”

Figure 186: Show only the most important content

When an individual dashboard has so much information on it that scrolling is

required, the power of the dashboard is diminished because the information that

lives there is intended to be viewed together. Each piece of information on the

dashboard is meant to give the reader the ability to answer part of the central

question of the dashboard. These charts combine to answer the question, so if

the reader can’t see them together, making them work together is much more

difficult.

Lastly, a report will more than likely include written explanations of the data

presented. It can also be accompanied by summaries and even

recommendations for the future of the business. A dashboard will presume a

higher level of understanding of the subject matter by the reader and will not

include much explanation, if any at all.

230 DPP - Integrating requirements of Industry 4.0 in TVET

1.3.3. How they are the same?

Similarities are relatively few in number. The first, both a report and a

dashboard present information. The second, mostly revolves around the

content that they have. While charts and tables can appear on both, tables are

less likely to appear on dashboards. This isn’t to say that tabular information

isn’t important, this is only to stress the idea that the dashboard must be

consumable in short order and must contain only pieces of information that work

together to answer the central question.

As you can see in the table provided below, certain key aspects of a dashboard

might also be involved in the creation of a report but they do not have to. These

key aspects must be answered “Yes” in order for it to be a dashboard.

Figure 187: Use the right size and position

231 DPP - Integrating requirements of Industry 4.0 in TVET

1.4. Design guidelines for dashboards

1.4.1. Be clear about what you’re trying to achieve

The first step to designing any dashboard is to clearly define what you’re trying

to achieve. What‘s the purpose of your dashboard? Who’s it for? What do you

want them to do differently because of it?

Perhaps you’re trying to focus your team on a specific goal, or show them how

they contribute to the bigger picture. Or maybe you want to make sure a

particular type of problem gets noticed quicker. These are all good purposes to

keep in mind.

1.4.2. Include only the most important content

Figure 188: Add alerts as needed

Content is key when it comes to dashboarding. If you’re not showing useful

metrics then it doesn’t matter how you arrange them.

Often you’ll already have some goals and KPIs defined, and adding those is a

great starting point. Just remember, everything should tie back to the purpose

of your board.

Every inch on your TV dashboard is valuable real-estate. Adding too much

information can detract from what’s important and make everything harder to

find. If you’re really struggling to fit everything in then you may need more than

one dashboard.

232 DPP - Integrating requirements of Industry 4.0 in TVET

When putting any metric on your dashboard you should make sure they:

 Match the purpose of your board

 Can be influenced by your team

 Can be easily understood

 Change reasonably often (you don’t want to be staring at numbers that

never change)

 Don’t vary so much that you can’t easily detect trends

1.4.3. Use size and position to show hierarchy

Dashboards need hierarchy to be easy to scan. Use size and position to give

emphasize the most important information and to downplay metrics that need

to be looked at less frequently. Consistent sizes and clear relationships between

elements will help create patterns and visual flow.

In terms of positioning, the top left corner of your dashboard is the best location

as that’s where your eyes are naturally drawn to first.

Don’t be afraid of empty space. It’s better to leave a gap than to make something

bigger just to fill it.

Figure 189: Group related metrics together

233 DPP - Integrating requirements of Industry 4.0 in TVET

1.4.4. Give your number context

To know if a number’s good or bad your viewers need context. Would they

know, for instance, that 42 new leads today is out of the ordinary?

One of the easiest ways to do this is to include past data. You could include the

same metric for the previous day, or even a line or column chart showing how

the metric tracks over a longer period of time. Another technique is to include

the average or previous highs and lows.

If you’re working towards a goal, include the target as well as your current

progress.

You can also add warnings for when a metric is above or below a certain

threshold to make it easier to spot problems.

Figure 190: Dashboard - easier to read

1.4.5. Group your related metric

Positioning the information on your dashboard logically is essential. Grouping

related metrics next to each other makes them easy to find — and makes your

dashboard's design more attractive.

There are many different ways to group e.g. by metric, product, brand,

campaign, region, team or even time period. You may need to experiment with

which is most appropriate for your board.

Giving groups a title makes them easier to spot.

234 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 191: Dashboard brief

1.4.6. Be consistent

With many dashboards you’ll find there’s an element of repetition, for example

you might be showing the same set of metrics for multiple things. Your

dashboard will be far easier to read if you use the same visualizations and

layouts between groups. It will also look far more pleasing, so avoid the

temptation to use a line chart instead of a column just to spice things up.

Figure 192: Operational Dashboard Example

235 DPP - Integrating requirements of Industry 4.0 in TVET

1.4.7. Use clear labels your audience will understand

A key part of your dashboard are the labels that describe each metric or chart.

They should be self explanatory, and unambiguous for your viewers At the

same time, you should try and keep them as short as possible to avoid cluttering

up your board and getting in the way of the data.

Abbreviations can be helpful too (as long as your audience understand them)

e.g. “7d” instead of “7 days”. Symbols like ‘%’ can replace the word. You may

also get away with a shorter definition for a metric if people are already familiar

with it.

Headings can also be used to reduce repetition. Imagine you have the same

metric for different time frames e.g. signups today, signups this month etc. If

they’re all grouped under a heading called “Signups” you don’t need to repeat

it each time.

1.4.8. Round your number

When displaying numbers, don’t include more precision than you need.

Showing your conversion rate to 3 decimal places or your revenue to the

nearest cent when you only care about much bigger changes just distracts from

what’s important. Plus, including too much detail can make a mountain out of a

molehill.

Figure 193: Analytical Dashboard Example

236 DPP - Integrating requirements of Industry 4.0 in TVET

1.4.9. Keep evolving your dashboards

Our final piece of dashboard design advice is the most important. Once you’ve

built your dashboard don’t just leave it. Ask you team for feedback.

 What do they look at most often or find most useful, and why?

 What do they never look at or find least useful, and why?

 Is there anything missing that they’d find useful?

 Has it changed anything about the way they work?

Use this feedback to iterate your dashboard. Check your dashboard is driving

the behaviour you intended. Step back from your board every now and then and

look at how all the elements work together. Remind yourself what information

you’re primarily trying to get across and how effectively those important

elements stand out.

As your goals and priorities change, make sure you update your board so it acts

as the heartbeat for whatever you’re doing.

Illustration 7: Data analysis with dashboard

237 DPP - Integrating requirements of Industry 4.0 in TVET

1.5. Dashboard limitations

1.5.1. Lack of real-time anomaly detection prevents proactive

incident management

Most BI dashboards do not show data in real-time, and when they do, there are

so many metrics cluttering screens that users can easily miss the most critical

information. Timely intervention is crucial to modern businesses, which often

run tightly integrated ecosystems of applications and infrastructure that stretch

across multiple departments and process enormous amounts of data.

For example, leading adtech platform, Rubicon Project, fields trillions of bid

requests per month and needs to Analyse data points from millions of potential

sources. In an environment like that, every minute can have significant impact.

They found that traditional dashboards failed to deliver the real-time detection

and response capability necessary to intervene before anomalies impacted

their bottom line.

1.5.2. Over-reliance on historical data

Most companies configure and use traditional dashboards to track KPIs and

other critical business metrics to understand how their business and systems

perform. One factor often missed by decision-makers is that the data they view

in traditional dashboards describes what has already happened and might not

be a reliable indicator of what will happen in the future.

Moving from descriptive to predictive modes of thinking requires a deep

understanding of the business context and critical thinking, which can be

challenging for any person, or even a dedicated team, given the diversity of the

data set, new trends, and fluctuating behaviors.

1.5.3. Missing small incidents that have a negative impact

Some incidents are hard to spot, but that doesn’t mean they won’t significantly

impact the business. When undetected, hard-to-spot incidents can accumulate

and can end up having the same impact as more prominent issues.

A typical scenario involves incidents affecting only one business component.

These isolated issues can easily get lost in KPIs based on a calculated average

of multiple metrics. For example, a server cluster might be displaying a 99.99%

average uptime. If one server in that cluster is experiencing an anomalously

high amount of downtime, it could remain invisible to the dashboard. A single

server is a small data point in a data center with thousands of servers, but it

could be vital depending on what that server is running.

https://www.anodot.com/case-studies/rubicon-project-automates-real-time-business-incident-detection-with-anodot/
https://www.anodot.com/blog/kpi-dashboards-for-business-intelligence/
https://www.anodot.com/blog/monitoring-business-metrics/
https://www.anodot.com/blog/a-small-leak-can-sink-a-great-ship/

238 DPP - Integrating requirements of Industry 4.0 in TVET

1.5.4. Cluttered dashboards and false positives

Sometimes, even with all the necessary information, BI dashboards struggle to

present a coherent picture. With CEO dashboards, in particular, there’s some

guesswork in determining ahead of time what information is important enough

to display in the limited real estate available on the screen. When alerts start to

pop up, it can be difficult to tell which data is necessary or worth ignoring. The

sheer volume and increasing complexity of data can quickly overwhelm the

dashboard interface, making it much harder for business leaders to consume in

a timely, accurate manner.

1.5.5. Lack of intelligent prioritization

Collecting thousands of events or alerts every minute from your applications

and infrastructure, and presenting that data in a dashboard isn’t analytics. Users

apply filters on this data, performing their own analysis and work.

Deriving intelligence from data shouldn’t require an end user to define what to

look for, or where, or what are the most critical KPIs, or what normal or abnormal

is. This is not intelligence because a user is telling the dashboard exactly what

data to show.

1.5.6. Leverage the Power of AI Analytics

Business strategy is only effective if empowered with enough intelligence and

agility to outmaneuver the competition. Traditional dashboards don’t provide

insight fast enough in today’s data-driven world, and when a business can lose

hundreds of thousands of dollars in a single hour due to a pricing glitch on an

e-Commerce site, the stakes are too high.

Companies need real-time, actionable insights across all data metrics relevant

to performance. The best-performing businesses leverage BI solutions

empowered by AI and machine learning to eliminate the need for human

correlation across the millions of critical metrics needed to understand business

and system performance.

Grouping and correlating multiple anomalies by design, Anodot’s AI-powered

analytics elevates the essential insights first. By learning the normal behavior

of millions of metric’s, Anodot detects only the most impactful incidents and

alerts relevant teams at the start.

https://www.anodot.com/blog/5-critical-shortcomings-of-traditional-bi-tools/
https://www.anodot.com/blog/correlation-analysis-anomaly-detection/
https://www.anodot.com/learning-center/ai-analytics/
https://www.anodot.com/learning-center/ai-analytics/

239 DPP - Integrating requirements of Industry 4.0 in TVET

1.6. Explanation of the procedure for creating a dashboard

Step 1: Straight to the point

A dashboard is one single screen made up with the most important indicators.

Therefore, a dashboard should not show all the data points. It must only cover

essential information. It should be a selection of the most relevant

indicators of your business.

When looking at your dashboard, the first thing you should see is a quick

presentation of the most important data related to your activity.

Excel tabs or other secondary menus created with other data visualization tools

will allow you to study your data more in-depth.

Step 2: Addressing a problem related to your activity

You must start by identifying your operational needs, then understanding your

audience. You have to ask yourself: which data best addresses the specific

questions of interest? As organizations and professional fields are very

diverse, the way the dashboard is configured will have to accommodate their

different needs and backgrounds.

Create a screen or a tab for each data query. Too often dashboards are full of

irrelevant data. The problem with these dashboards is that they do not portray

a clear message. Your user doesn’t need to see all of the data which are

available. They only need to see the information that they can use for their tasks.

Therefore it is your job to organize the data for them.

In order to do this, you must know what the board and your colleagues expect

to see.

Useful tip: a huge amount of public data is available on Office for National

Statistics’ website and on other public databases. With this data, you can give

your audience the big picture.

Step 3: Creating action points

Building a dashboard is a process that evolves constantly. Your projects will

evolve, and so will your company. An effective dashboard is one that you can

revise later if necessary. Meet with colleagues regularly and review the

objectives to make sure the selection of indicators still meets their needs.

Each indicator must represent an action for its users. To give an example,

a declining number of visitors for a website can alert the marketing department

to take immediate action. The data must generate an action; the data can signal

an anomaly. This is one important criterion that needs to be built into a

dashboard for it to be effective.

https://toucantoco.com/blog/data-visualisation-or-dataviz-definition/
https://www.ons.gov.uk/
https://www.ons.gov.uk/

240 DPP - Integrating requirements of Industry 4.0 in TVET

Step 4: Defining performance indicators

The wrong choice of indicators is a curse for the organization. Each indicator

must serve the company’s global strategy. Furthermore, it should be clear what

actions are required if there is a sudden change in the data.

If you choose the wrong indicator for your dashboard, you risk that your team

loses focus and takes the wrong decisions.

For an indicator to be on your dashboard, it needs to be comprehensible

and adapted to all the people that will have access to it. In addition, it must be

reliable and comparable contextually.

For example, it wouldn’t make sense to give the company’s annual revenue

without first comparing it to the previous years’ revenues or to another

company’s revenues.

It is necessary to keep this logic with respect to the audience and for all

indicators.

Step 5: Creating a mobile dashboard

How does your audience use information? Most users like to use their

computers to look at reports. However, some users might have a more mobile

profile, like managers and salesmen. These users are always on the go.

Therefore it is important for them to be able to access the dashboard freely

on a mobile device.

Since dashboards are interactive tools, mobile compatibility allows the user to

interact with the data at his fingertips. You can touch your creations to show

more detail, navigate through the main menu into different subcategories. Most

importantly, you can give a live demo when making a presentation to clients.

Step 6: Making your data more familiar

If your audience is knowledgeable about the data that you are presenting, they

will be more receptive to the message you are trying to relay.

It is your job to find the best examples that relate to your audience. Try new

things, show not only your data but also why you are showing it. Give context

and illustrate your data with stories and experiences.

241 DPP - Integrating requirements of Industry 4.0 in TVET

Step 7: Making it easy to read

Are you tired of not understanding someone else’s dashboard? Don’t make the

same mistakes.

The easier the data is to read, the quicker it will be understood. Decision

making is also affected by the clearness of your dashboard. If it is clear to the

reader, he can take instantaneous decisions on the outcome. Something to

keep in mind is that the user isn’t always familiar with the data format. Therefore

it is very important to give accessible information to the users.

A graph must convey a single message. Often, dashboards present dozens of

indicators and graphs which result in the loss of the users’ interest. Do not

overwhelm the audience by presenting graph after graph of information. Present

only one idea or visualization per screen. You can use many slides if you have

a lot of things to the present.

Step 8: Plotting the data

To captivate your audience, narrate a story.

Data is used to add truth to what you are saying. It shouldn’t be the center of

your arguments. To tell a story, you must contextualize your data. Write a

story that evolves around your data.

Work on making your dashboard more colourful. Your comments and titles

should be easy to read. This allows your audience to follow and anticipate the

data that is being presented.

Step 9: Understanding your audience

When you are preparing your data analysis report, it is essential to answer the

right questions. To do this you must put yourself in the shoes of your audience.

You have to ask yourself, ‘Do the reporting tools that I am using correspond

to the message I want to convey? Is the graph I am using intuitive enough for

my audience? Is this indicator comprehensive enough?

Step 10: Presenting it smoothly

Fear of data and statistics is often an obstacle for the audience in understanding

a report. You can overcome this by visualizing the data. At times, the audience

needs you to guide them. The situation is to demonstrate and use data

storytelling.

https://toucantoco.com/blog/en/data-storytelling-dataviz/?__hstc=45788219.b855a4b27c1d31f284fa344cf67d13b5.1629275637932.1629275637932.1629275637932.1&__hssc=45788219.1.1629275637932&__hsfp=1984308756
https://toucantoco.com/blog/en/data-storytelling-dataviz/?__hstc=45788219.b855a4b27c1d31f284fa344cf67d13b5.1629275637932.1629275637932.1629275637932.1&__hssc=45788219.1.1629275637932&__hsfp=1984308756

242 DPP - Integrating requirements of Industry 4.0 in TVET

1.7. Security aspects for dashboards

A good security dashboard needs to include the following for a

specified/measured time period: An indication of current threat level to the

organization; an indication of events and incidents that have occurred; a record

of authentication errors; an indication of scans, probes and unauthorized

access, and an indicator if those key measures are up, down or unchanged;

brute force attacks against the system and non-compliant devices; policy

violations; malware events; and phishing events.

Security dashboard checklist:

 Current threat level to the organization.

 Events and incidents that have occurred.

 Authentication errors.

 Scans, probes and unauthorized access.

 Brute force attacks against the system and non-compliant devices.

 Policy violations.

 Malware events.

 Phishing events.

 Detailed technical metrics specific to the controls that are employed to

manage risks to existing and emergent threat vectors.

 Number of covered assets.

 Newly discovered assets.

 Decommissioned assets.

 Number of threats detected and their risk levels.

 Clear visibility into the risk landscape.

 Areas of training/awareness.

 Vulnerability management.

 Third-party risk management.

 Incident management.

 Overall risk management.

 Mean time to patch.

 Mean time to detect and respond to potential incidents.

 Average window of exposure.

 Number of exceptions/types of exceptions.

 Phish fail percentage.

 Impact of remedial training.

243 DPP - Integrating requirements of Industry 4.0 in TVET

1.8. Installation of necessary libraries

We will start by installing an explainer dashboard using pip. The command given

below will do that.

pip install explainerdashboard

- Importing required libraries

In this step, we will import the required libraries and functions to create a

machine learning model and dashboard.

from sklearn.ensemble import RandomForestClassifier

from explainerdashboard import ClassifierExplainer, ExplainerDashboard

from explainerdashboard.datasets import titanic_survive, titanic_names

- Creating the Model & Dashboard

This is the final step in which we will create the machine learning model and then

interpret that model by creating a dashboard.

+ Creating the Model:

feature_descriptions = {

 "Sex": "Gender of passenger",

 "Gender": "Gender of passenger",

 "Deck": "The deck the passenger had their cabin on",

 "PassengerClass": "The class of the ticket: 1st, 2nd or 3rd class",

 "Fare": "The amount of money people paid",

 "Embarked": "the port where the passenger boarded the Titanic. Either

Southampton, Cherbourg or Queenstown",

 "Age": "Age of the passenger",

 "No_of_siblings_plus_spouses_on_board": "The sum of the number of siblings

plus the number of spouses on board",

 "No_of_parents_plus_children_on_board" : "The sum of the number of parents

plus the number of children on board",

}X_train, y_train, X_test, y_test = titanic_survive()

train_names, test_names = titanic_names()

model = RandomForestClassifier(n_estimators=50, max_depth=5)

model.fit(X_train, y_train).

244 DPP - Integrating requirements of Industry 4.0 in TVET

- Creating the Dashboard:

from sklearn.ensemble import RandomForestClassifier

from explainerdashboard import ClassifierExplainer, ExplainerDashboard

from explainerdashboard.datasets import titanic_survive,

titanic_namesfeature_descriptions = {

 "Sex": "Gender of passenger",

 "Gender": "Gender of passenger",

 "Deck": "The deck the passenger had their cabin on",

 "PassengerClass": "The class of the ticket: 1st, 2nd or 3rd class",

 "Fare": "The amount of money people paid",

 "Embarked": "the port where the passenger boarded the Titanic. Either

Southampton, Cherbourg or Queenstown",

 "Age": "Age of the passenger",

 "No_of_siblings_plus_spouses_on_board": "The sum of the number of siblings

plus the number of spouses on board",

 "No_of_parents_plus_children_on_board" : "The sum of the number of parents

plus the number of children on board",

}X_train, y_train, X_test, y_test = titanic_survive()

train_names, test_names = titanic_names()

model = RandomForestClassifier(n_estimators=50, max_depth=5)

model.fit(X_train, y_train)explainer = ClassifierExplainer(model, X_test, y_test,

 cats=['Deck', 'Embarked',

 {'Gender': ['Sex_male', 'Sex_female', 'Sex_nan']}],

 cats_notencoded={'Embarked': 'Stowaway'},

 descriptions=feature_descriptions,

 labels=['Not survived', 'Survived'],

 idxs = test_names,

 index_name = "Passenger",

 target = "Survival",

)db = ExplainerDashboard(explainer,

 title="Titanic Explainer",

 shap_interaction=False,

)

db.run(port=8050)

245 DPP - Integrating requirements of Industry 4.0 in TVET

1.9. Explanation of the necessary programming concepts,

functions and classes to display dashboards

Object-oriented programming is an approach to problem solving where all

computations are carried out using objects. An object is a component of a

programme that knows how to perform certain actions and how to interact with

other elements of the programme. Objects are the basic units of object-oriented

programming. A simple example of an object would be a person. Logically, you

would expect a person to have a name. This would be considered a property of

the person. You could also expect a person to be able to do something, such

as walking or driving. This would be considered a method of the person.

Code in object-oriented programming is organized around objects. Once you

have your objects, they can interact with each other to make something happen.

Let's say you want to have a programme where a person gets into a car and

drives it from A to B. You would start by describing the objects, such as a person

and car. That includes methods: a person knows how to drive a car, and a car

knows what it is like to be driven. Once you have your objects, you bring them

together so the person can get into the car and drive.

A class is a blueprint of an object. You can think of a class as a concept, and

the object is the embodiment of that concept. You need to have a class before

you can create an object. So, let's say you want to use a person in your

programme. You want to be able to describe the person and have the person

do something. A class called 'person' would provide a blueprint for what a

person looks like and what a person can do. To actually use a person in your

programme, you need to create an object. You use the person class to create

an object of the type 'person.' Now you can describe this person and have it do

something.

Classes are very useful in programming. Consider the example of where you

don't want to use just one person but 100 people. Rather than describing each

one in detail from scratch, you can use the same person class to create 100

objects of the type 'person.' You still have to give each one a name and other

properties, but the basic structure of what a person looks like is the same.

A function is a combination of instructions that are combined to achieve some

result. A function typically requires some input (called arguments) and returns

some results. For example, consider the example of driving a car. To determine

the mileage, you need to perform a calculation using the distance driven and

the amount of fuel used. You could write a function to do this calculation. The

246 DPP - Integrating requirements of Industry 4.0 in TVET

arguments going into the function would be distance and fuel consumption, and

the result would be mileage. Anytime you want to determine the mileage, you

simply call the function to perform the calculation.

Illustration 8: Object-Oriented Programming

247 DPP - Integrating requirements of Industry 4.0 in TVET

1.10. Clarification of the necessary web-based programming

components for dashboard programming

A typical dashboard contains three elements:

 Heading explaining the content of the dashboard and its purpose

 Diagram visualizing the metrics

 Short explanation of the status and information in the diagram

In designing the pages of the dashboard the principles of cognitive perception

abilities should be taken into account, such as:

1. Elements of the dashboard should be logically and conceptually related

to each other

2. The number of elements in the dashboard (diagrams, text fields,

explanations, buttons) should be no more than 7 (+2 if necessary) as this

is the number of elements an average person can keep in the short term

memory.

3. The use of colours should be limited to the minimum and the colours

should extrapolate the diagrams and the important information in the

dashboard.

A number of technologies and framework exists which can support the

development of a dashboard, for example:

 Dashing.io (open source): http://dashing.io/ - a ready-to-use dashboard

software based on XML file links to the web server. The framework is

simple to set up, but limited in its graphical abilities. It also requires a

backbone processor of data as it cannot process the data itself.

 The dash (free): https://www.thedash.com/ - an alternative to dashing.io,

with similar requirements on backbone processor scripts, but more

flexible in terms of available visualizations (e.g. diagrams). Software

Center metrics project 8

 Google dashboard (free):

 https://developers.google.com/appsscript/articles/charts_dashboard - a

set of simple-to-set-up javascript and SVG based charts which can be

customized very easily. The main advantage is that it is simple and easy

to use but it also requires backbone processing of the data.

 D3 (Data Driven Documents, open source): http://d3js.org/ - a more

flexible (powerful and expressive) alternative to Google

charts/dashboard.

248 DPP - Integrating requirements of Industry 4.0 in TVET

 Tibco Spotfire:

 http://spotfire.tibco.com/products/spotfiredesktop?gclid=CjwKEAjwkK6w

BRCcoK_tiOTzFASJAC7RArijfNQV5JgnHYXKOVyhwDlfgKdTj0b3ei4xy

JBqn6VqhoCLO3w_wcB – a business intelligence tool which allows to

easily create drill-down reports and dashboards. The main advantage is

that once the data is in a database the tool has a graphical way of creating

the charts (no programming needed as in the previous techniques); the

main disadvantage is that it is commercial and that setting up the

database and importing the data requires programming and more effort

than in the case of the scripts for the previous techniques.

 Tableu: http://www.tableau.com/ and

http://www.tableau.com/learn/whitepapers/5- best-practices-for-

effective-dashboards - an alternative to Spotfire.

 Qlikview: http://www.qlik.com – another alternative to Spotfire

Illustration 9: Future artificial intelligence robot and cyborg

249 DPP - Integrating requirements of Industry 4.0 in TVET

2. Possiblities for data visualization

2.1. Fundamentals of data visualization

2.1.1. Display of different diagram types with application areas

 Operational Dashboards: Picture a “traditional” dashboard. Are you seeing

metrics, updating in real-time, showing performance data related to the

operations of the day? If so, you’re envisioning an operational dashboard,

arguably the most common dashboard type. These are the dashboards well-

suited to a wall display on a manufacturing plant floor, or a command suite of

global operations.

An operational dashboard is designed to provide, at a glance, a comprehensive

snapshot of the performance of the day. Much like the dashboard on a car,

operational dashboards give the viewer information related to the immediate

performance of the organization. They shouldn’t require drill downs to be useful,

because often the viewer won’t have the option to manipulate the dashboard

past the initial view.

This means that the operational dashboard has to have a fairly detailed view.

In turn, it’s important to make sure, when planning an operational performance

dashboard, that the scope does not become too wide. If you try to accomplish

too much with one dashboard, it can become unclear and ultimately unused.

Keeping the end user in mind will assist in this process. Are you communicating

metrics to an assembly line, or an executive? Make sure to focus group your

end users so you know exactly what they need to see to perform their job

functions effectively.

Analytical Dashboards :If you are using data from the past to identify trends

that can help you make decisions about the future, you are on your way to

creating an analytical dashboard. These dashboards are tools that the user

should be able to interact with, inquire of, and explore. As such, features like

pivot tables and drilldowns are well-suited to analytical dashboards.

Comparing and contrasting data across multiple variables is a crucial aspect of

data analytics. A user must be able to compare data across time, to see if

performance differences correlate with corporate action (or if outside forces,

such as seasonality, have measurable effects on metrics). Slicing and dicing

the data in a structured way allows the user to determine what efforts have

worked.

https://www.idashboards.com/upgrades/wall/

250 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 194: Strategic Dashboard Example

An analytical dashboard can be a valuable tool in the right hands, but they

require a level of understanding that the average business user may not

possess. The data in an analytical dashboard is typically complex, as are the

analytical exercises the dashboard is suited towards. As such, analytical

dashboards are best left to your database analysts as opposed to the whole

company. Defining user permissions is a simple way to ensure that your

analytical dashboards are being served to the right group.

https://www.idashboards.com/dashboard-examples/transportation-logistics-dashboard-fleet-management/

251 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 195: Analytical Dashboard Example

Strategic Dashboards:We spend a lot of time talking about KPIs, because

the evidence is clear that setting goal and aiming towards them is the surest

path to success. If you’ve defined key performance indicators and are tracking

performance in relation to those KPIs, odds are you’ve got yourself a strategic

dashboard. These dashboards are often used to align departmental

performance with overall corporate strategy.

Typically, strategic dashboards have a retrospective flair. They look at

benchmark performance data from, say, last quarter, and compare it to the

current period. Have things improved, stayed the same, or worsened? They’re

also often composed of data from multiple sources, as company-wide goals are

affected by multiple systems and actions.

Strategic dashboards often share metrics that are important to the whole

organization, so consider having them available to the whole organization. It’s

obvious that management and the executive team would want a birds-eye-view

of strategic KPIs, but when this sort of performance data is transparently shared

with lower level employees, there can be unexpected benefits. You never know

where the next great idea in your organization will come from, and when you

empower the whole team with knowledge, that becomes especially true.

https://www.idashboards.com/blog/2017/06/28/bulletproof-social-media-marketing-kpis/
https://www.idashboards.com/blog/2018/02/14/using-big-data-to-refine-your-kpis/
https://www.idashboards.com/blog/2018/07/18/defining-strategic-kpis/
https://www.idashboards.com/blog/2016/09/29/data-transparency-its-importance-for-your-organization/

252 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 196: Strategic Dashboard Example

2.1.2. Definition of the necessary data structures to use diagram type:

We can’t stress enough the importance of choosing the right data visualization

types. You can destroy all of your efforts with a missing or incorrect chart type.

It’s important to understand what type of information you want to convey and

choose a data visualization that is suited to the task.

Dashboard-centric charts and visualizations fall into four primary categories that

are related to the aim of the visualization: relationship, distribution, composition,

and comparison. It is important to understand the aim of the metric before

picking the chart type that you want. Here we will talk about a few of the most

common types and their aims:

Line charts are great when it comes to displaying patterns of change across a

continuum. They are compact, clear, and precise. Line charts format is common

and familiar to most people so they can easily be Analysed at a glance.

Choose bar charts if you want to quickly compare items in the same category,

for example, page views by country. Again such charts are easy to understand,

clear, and compact.

253 DPP - Integrating requirements of Industry 4.0 in TVET

Pie charts aren’t the perfect choice. They rank low in precision because users

find it difficult to accurately compare the sizes of the pie slices. Although such

charts can be instantly scanned and users will notice the biggest slice

immediately, there can be a problem in terms of scale resulting in the smallest

slices being so small that they even cannot be displayed. A good practice when

using pie charts is to only do it with a couple of slices, this way, you make sure

that the information is easy to understand and will bring value to your

dashboard.

Sparklines usually don’t have a scale which means that users will not be able

to notice individual values. However, they work well when you have a lot of

metrics and you want to show only the trends. They are rapidly scannable and

very compact.

It’s also not that easy to decipher scatterplots as they are an advanced type of

visualization for more knowledgeable users. They aim to find the correlation

between two variables. When the data is distributed on the chart, the results

show the correlation to be positive, negative, or nonexistent.

Gauge charts are valuable visualizations to provide context. The advantage of

these charts lays in the fact that they are easy to interpret as they use various

colours to represent different values of the same metric. They are usually used

in situations where the expected value is already known, this way the different

stakeholders that use the dashboard can understand where they stand just by

looking at the gauge chart. For example, to monitor the sales target or sales

growth.

Most experts agree that bubble charts are not fit for dashboards. They require

too much mental effort from their users even when it comes to reading simple

information in a context. Due to their lack of precision and clarity, they are not

very common and users are not familiar with them. in order)

-There are three types of dashboards: operational, strategic, and analytical.

+ Metrics you can track on an operational dashboard

 Website performance metrics like new users or bounce rate

 Follower count or comments across your social media channels

+ Metrics you can track on an analytical dashboard

Annual contract value to track the dollar amount an average customer contract

is worth

Measure your company spending habits with the Bessemer Efficiency Score

https://www.klipfolio.com/metrics/marketing/website-new-users
https://www.klipfolio.com/metrics/marketing/website-bounces
https://www.klipfolio.com/metrics/marketing/followers
https://www.klipfolio.com/metrics/social-media/post-comments
https://www.klipfolio.com/metrics/finance/average-contract-value
https://www.klipfolio.com/metrics/saas/bessemer-efficiency-score

254 DPP - Integrating requirements of Industry 4.0 in TVET

Understand the increase in daily active users over a period time

 Return on ad spend to track the effectiveness of your digital advertising

dollars

+ Metrics you can track on a strategic dashboard

 Monthly, quarterly, or yearly fiscal performance

 Account and MRR growth rate

 Earnings before interest, tax, depreciation, and amortization (otherwise

known as EBITDA)

2.2. Placement of diagrams in dashboards

Dashboard best practices in design concern more than just good metrics and

well-thought-out charts. The next step is the placement of charts on a

dashboard. If your dashboard is visually organized, users will easily find the

information they need. Poor layout forces users to think more before they grasp

the point, and nobody likes to look for data in a jungle of charts and numbers.

The general rule is that the key information should be displayed first – at the top

of the screen, upper left-hand corner. There is some scientific wisdom behind

this placement – most cultures read their written language from left to right and

top to bottom, which means that people intuitively look at the upper-left part of

a page first, no matter if you're developing an enterprise dashboard design or a

smaller-scaled within the department - the rule is the same.

Another useful dashboard layout principle is to start with the big picture. The

major trend should be visible at a glance. After this revealing first overview, you

can proceed with more detailed charts. Remember to group the charts by theme

with the comparable metrics placed next to each other. This way, users don’t

have to change their mental gears while looking at the dashboard by, for

example, jumping from sales data to marketing data, and then again to sales

data. This analytics dashboard best practice will enable you to present your

data in the most meaningful way and clear to the end-user.

2.3. Conversion of data from data source to data sink in the diagram

2.3.1. Data preparation, pre-filtering, source selection

- Data preparation is the process of cleaning and transforming raw data prior to

processing and analysis. It is an important step prior to processing and often

involves reformatting data, making corrections to data and the combining of

data sets to enrich data.

Data preparation is often a lengthy undertaking for data professionals or

business users, but it is essential as a prerequisite to put data in context in order

to turn it into insights and eliminate bias resulting from poor data quality.

https://www.klipfolio.com/metrics/saas/dau-growth-rate
https://www.klipfolio.com/metrics/marketing/return-on-ad-spend-roas
https://www.klipfolio.com/metrics/category/finance
https://www.klipfolio.com/metrics/saas/mrr-growth-rate
https://www.klipfolio.com/metrics/finance/EBITDA-margin

255 DPP - Integrating requirements of Industry 4.0 in TVET

- 76% of data scientists say that data preparation is the worst part of their job,

but the efficient, accurate business decisions can only be made with clean data.

Data preparation helps:

 Fix errors quickly — Data preparation helps catch errors before

processing. After data has been removed from its original source,

these errors become more difficult to understand and correct.

 Produce top-quality data — Cleaning and reformatting datasets

ensures that all data used in analysis will be high quality.

 Make better business decisions — Higher quality data that can

be processed and Analysed more quickly and efficiently leads to

more timely, efficient and high-quality business decisions.

Additionally, as data and data processes move to the cloud, data preparation

moves with it for even greater benefits, such as:

 Superior scalability — Cloud data preparation can grow at the

pace of the business. Enterprise don’t have to worry about the

underlying infrastructure or try to anticipate their evolutions.

 Future proof — Cloud data preparation upgrades automatically so

that new capabilities or problem fixes can be turned on as soon as

they are released. This allows organizations to stay ahead of the

innovation curve without delays and added costs.

 Accelerated data usage and collaboration — Doing data prep in

the cloud means it is always on, doesn’t require any technical

installation, and lets teams collaborate on the work for faster results.

Additionally, a good, cloud-native data preparation tool will offer other benefits

(like an intuitive and simple to use GUI) for easier and more efficient

preparation.

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#34d3b5ad6f63

256 DPP - Integrating requirements of Industry 4.0 in TVET

- Data Preparation Steps

The specifics of the data preparation process vary by industry, organization and

need, but the framework remains largely the same.

Figure 197: Illustration of Data preparation

i. Gather data

The data preparation process begins with finding the right data. This can come

from an existing data catalog or can be added ad-hoc.

ii. Discover and assess data

After collecting the data, it is important to discover each dataset. This step is

about getting to know the data and understanding what has to be done before

the data becomes useful in a particular context.

Discovery is a big task, but Talend’s data preparation platform offers

visualization tools which help users profile and browse their data.

iii. Cleanse and validate data

Cleaning up the data is traditionally the most time consuming part of the data

preparation process, but it’s crucial for removing faulty data and filling in gaps.

Important tasks here include:

Removing extraneous data and outliers.

Filling in missing values.

Conforming data to a standardized pattern.

Masking private or sensitive data entries.

Once data has been cleansed, it must be validated by testing for errors in the

data preparation process up to this point. Often times, an error in the system

will become apparent during this step and will need to be resolved before

moving forward.

https://bi-survey.com/data-discovery
https://www.talend.com/resources/self-service-data-preparation/

257 DPP - Integrating requirements of Industry 4.0 in TVET

iv. Transform and enrich data

Transforming data is the process of updating the format or value entries in order

to reach a well-defined outcome, or to make the data more easily understood

by a wider audience. Enriching data refers to adding and connecting data with

other related information to provide deeper insights.

v. Store data

Once prepared, the data can be stored or channeled into a third party

application—such as a business intelligence tool—clearing the way for

processing and analysis to take place.

3. Create and deploy dashboards

3.1. Implementation of a suitable programme logic to create a

dashboard

3.1.1. Implementation of static dashboards without data update

Static dashboards are reporting tools used to summarize information into

digestible graphical forms that offer at-a-glance visibility into business

performance. The value resides in their capability to illustrate progressive

performance improvements via fitting visual features to users. Depending upon

the purpose and context, data updates can occur once a month, week, day, or

even in real-time . Static dashboards can fulfill both the urgency of fast-paced

environments, offering real-time data support, and tracking of performance

metrics against enterprise-wide strategic objectives based on historical data.

However, such dashboards do not involve the user in the data visualization

process and have issues with handling complex and multidimensional data .

Interactive dashboards can be considered a step toward directly involving the

user in the analysis process. Interactive dashboards consider not only visual

features, but also introduce functional features such as point and click

interactivity . These capabilities allow operational decision-makers to enable

more elaborate analyses . Addressing the impediments of static dashboards,

they are used to establish a better understanding of the complex nature of data,

which can also foster decision-making. However, the benefits of interactivity

could increase the users' cognitive effort and required manual analysis time,

increasing the probability of delayed decisions or (even) errors.

258 DPP - Integrating requirements of Industry 4.0 in TVET

3.1.2. Implementation of dynamic dashboards with update interval

- A dynamic dashboard is a type of data dashboard that updates automatically

in real-time. You might also hear them referred to as interactive dashboards,

since the reports can be changed, reorganized, and manipulated. That's

different from a static dashboard, which only displays a fixed set of data.

Most of the time when we use the word ‘dashboards’, what we’re really talking

about is dynamic dashboards. Below, let’s take a look at a few ways you might

use dynamic dashboards to explore your EHS data.

i. Analyse data in real-time

As we said before, dynamic dashboards update automatically to show your data

as it is collected. Information captured across your company on mobile devices

and through automated systems integrations shows up in your dashboards

almost immediately.

If you use a continuous emissions monitoring system, for example, you can view

emissions data as it is collected. Using interactive dashboards, you can Analyse

trends, drill down on details by location, measure actuals versus permit limits,

and monitor emissions performance related to production throughput. That

means you can get insights as soon as information is entered into your system

and react without delay.

ii. Drill down for deeper insights

Unlike static charts and graphs, dynamic dashboards allow users to interact

with their data. You can drill down — or see more specific data — on a particular

element or KPI until you find the level of detail you require.

Let’s say you want to see more detailed information about your CO2 emissions.

By clicking on that particular report, you can access additional layers of data. In

that way, dynamic dashboards enable you to dive deeper into your data without

cluttering the main data view.

iii. Drag-and-drop to build custom data views

Another advantage of dynamic dashboards is that you can control the

information that is displayed. You can drag-and-drop to add or remove reports

from your dashboard. You can also change the date range, chart type, size, and

placement of reports to draw people’s attention to the most important metrics.

In that way, dynamic dashboards allow you to visualize your data exactly how

you want to.

259 DPP - Integrating requirements of Industry 4.0 in TVET

iv. Tailor dashboards to specific users

With dynamic dashboards, you can publish different dashboards for different

groups of users. So you could build an executive dashboard for senior leaders.

Or, you could create a dashboard specifically for plant managers. This solves

the problem of having to create a different dashboard for each individual, or

forcing hundreds of employees to share a single static dashboard view.

Dynamic dashboards also allow you to control access to sensitive information.

A plant manager should only see data for the facility they oversee, while an

executive should see data for the entire company. With dynamic dashboards,

you can set permissions so that users will only see data that is relevant to their

role and that they are allowed to access.

3.2. Consideration of user authentication options for security aspects

3.2.1. User name, password:

The dashboard user interface is graphically divided into several blocks:

the utility menu, the main menu, and the main content pane.

The top right part of the screen contains a utility menu. It includes general tasks

related more to the dashboard than to the Ceph cluster. By clicking its items,

you can access the following topics:

 Change the language of the dashboard's user interface. You can

choose from Czech, English, German, Spanish, French, Portuguese,

Chinese, or Indonesian.

 Display a list of Ceph related tasks that are running in the background.

 View and erase recent dashboard notifications.

 Display a list of links that refer to the information about the dashboard,

its complete documentation, and an overview of its REST API.

 Manage the dashboard's users and user roles. Refer

to Chapter 14, Managing Users and Roles on the Command Line for

more detailed command line descriptions.

 Log out of the dashboard.

https://documentation.suse.com/ses/6/html/ses-all/dashboard-user-roles.html

260 DPP - Integrating requirements of Industry 4.0 in TVET

3.3. Creating a visualization programme

3.3.1. Creating a measurement programme to store sensor data in a

database

- In this project both environmental data as well as the amount of produced

goods shall be measured. Object awareness can be measured via different

types of sensors. One possibility is the usage of a ultrasonic sensor. These

types of sensors are used to measure distances. Their benefit is that they can

be used for detection on most surfaces. Depending on the area of application it

can be a disadvantage that their detection radius is cone shaped, which can

lead to crosstalk phenomena. Further a infrared (IR) sensor will be used. Their

benefit is that they have a point shaped detection mechanism. Their

disadvantage is that certain surfaces and materials do not reflect the IR signals

which causes the sensors to not be able to detect the object. For environmental

data different types of sensors are available. You have too choose two types of

sensors. Write the sensor type according to the datasheet in the table below.

Sensor1 Sensor2 Sensor3 Sensor4

The bosh XDK is a robust

microcontroller platform with a wide

sensor array. It is commonly used in

industrial applications especially for

data tracking. The bosh XDK delivers

a wide sensor array, a integrated wifi

module, a sd card reader to store

data on a memory card, freely

configurable buttons and a usb

connector to connect the XDK to a

PC for flashing new programmes and

directly outputting values in the

console of its own IDE.

Figure 198: XDK sensor
structure

261 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 199: XDK sensor function

The bosh XDK further permits its user to access many types of sensors. Users

can measure acceleration, temperature, humidity, air pressure and many more.

Further the XDK uses “FreeRTOS” as realtime operating system. This ensures

that precicly timed measurements with defined intervals are possible.

Further bosh uses a own eclipse based IDE called XDK-Workbench. This IDE

gives the user the choice to either programme the XDK directly with C, or to use

MITA programming language. MITA programming language was developed to

lessen the burden of creating I4.0 applications without knowledge of embedded

programming. The website: https://developer.bosch.com/web/xdk/getting-

started#1 is provided by bosh and has sample code for reading in sensor

values. Part of this task is to read through the descriptions and sample codes

and reuse them to create a working programme.

The task of this section is to create a measurement programme that reads in

the sensor values. Atleast two sensors of the XDK have to be used in this

exercise. You can choose which ever sensors you want to.

The read in values shall be outputted on the console of the XDK – Workbench.

The project shall be programmed in MITA programming language.

Measurements shall be done every 5 seconds. The desired console output shall

be as follows:

“TYPE OF SENSOR”: XXX”

“TYPE OF SENSOR”: XXX”

Enter a screenshot of the console output in the table below. Upload your code

and a screenshot of the console output.

https://developer.bosch.com/web/xdk/getting-started#1
https://developer.bosch.com/web/xdk/getting-started#1

262 DPP - Integrating requirements of Industry 4.0 in TVET

Console output:

263 DPP - Integrating requirements of Industry 4.0 in TVET

After the measurement and communication systems got set up the relational

database system can be started. As a first step a ERM diagram shall be created.

For the ERM diagram it is necessary to model all parts of the system. The

Database shall include the stations name, the sensor names, sensor types, the

sensor values, the microcontroller type and the time stamp when the

measurement was taken. All names have to be in english. Draw the ERM

diagram below:

264 DPP - Integrating requirements of Industry 4.0 in TVET

The ERM diagram is the basis of every database. After it was created Create

the database itself. The database name shall be either “Bottling Station” or

“CSPi4.0” depending on which station you work. All used names shall match

the ERM diagram. All tables have to be in 3rd normal form, if necessary

normalize the tables. Upload and include a picture of all created tables and

rows. Also upload the picture.

Table

265 DPP - Integrating requirements of Industry 4.0 in TVET

3.3.2. Implementing a dashboard to continuously read and graphically

display measured values from the database

After the database is set up and the measurement programme works it is

possible to store the measured data inside the database.

Writing to database

Whenever the programme receives a value over MQTT all received sensor

values plus the current time stamp of reception shall be saved into the

database. Ensure that the right tables and values are send to the database.

Further ensure that the timestamp has the right format to fit with your used

database. Below a small list of necessary SQL commands is presented. It is

also necessary to provide a library to send SQL commands to your database.

Test your setup by creating a programme that reads in values for 5 minutes and

save the measured values to the database. Before starting your measurement,

programme ensure the stations are running. Upload the code.

SQL commands:

Inserting values into a table

INSERT INTO tableName

VALUES (value1, value2, value3, ...);

Reading row values from table

SELECT colName FROM tableName

Reading from database

After completion load all stored sensor values from the database. Create a

visualization of the sensor values. Put every sensor value into a own diagram.

As tile choose the sensor name. Insert the diagrams below. Upload the code

and a screenshot of the diagrams.

266 DPP - Integrating requirements of Industry 4.0 in TVET

3.3.3. Generation of a limit value mechanism to detect exceeding of a limit

value

- After the test programmes were successfully completed the sensors can be

placed a desirable location. For the bottling station the sensors have to be

placed in a way that the ultrasonic sensor measures if a bottle is present from

the side. The IR sensor shall be used to measure if a cap was put on the bottle.

Find a valid location for the sensors to fullfill this requirement. On the CPSi 4.0

station the same procedure shall be conducted. Instead of bottles the position

of the blocks shall be figured out. Make sure to adjust the IR sensor so it can

detect if the block has the hole on the upside or not. Find a valid location for the

sensor placement and document your decision with a picture. Further describe

in your own words why you choose this location in the table below:

Picture Documentation

267 DPP - Integrating requirements of Industry 4.0 in TVET

3.3.4. Generation of an Alerting Mechanism to give warnings when limit

values are exceeded

The XDK offers the possibility to transmit data via publisher and subscriber

method using the MQTT protocol. Since the XDK offers a great variety of

sensors multiple sensors shall be transmitted to the computer. In this example

all measured data shall be converted to a JSON object. This object shall be

passed over MQTT. Therefore, there will only be one topic to send the data.

The sensor data shall be named as follows:

 For acceleration

o AccelX

o AccelY

o AccelZ

 For humidity

o Humidity

 For temperature

o Temperature

 For Pressure

o Pressure

Steps:

1. Setup a broker on the computer and run the broker

2. Use your measurement programme for the microcontroller to read in the

sensor values. Let the microcontroller read in with a interval of 3 seconds

3. Include the necessary libraries on the microcontroller and create the topic

to be published to.

a. Topic name

i. MeasurementXDK/ States

4. Include the necessary libraries on the computer and subscribe to the topic

where the sensor values are published at

5. Print the published values on the computers console

6. Console output

268 DPP - Integrating requirements of Industry 4.0 in TVET

After the deployment of the web app was successfully implemented the

dashboard application shall be created. The dashboard shall visualize the

measured sensor values in the database.

Static dashboard

In the first attempt a static dashboard shall be created. The following steps shall

be implemented:

1. Connect to the database

2. Load the stored values of all sensors and their corresponding

3. Create a dashboard

a. For every sensor create one diagram

b. Set the title of every diagram to the sensor name

c. Set the y axis to be the sensor value

d. Set the x axis to be the timestamp of the corresponding sensor

value

4. Set the background to be in gray colour

5. For one of the sensors also add a gauge

6. Before testing let the measurement run for 2 minutes

Include a picture of your dashboard below. Upload your code and your

dashboard picture.

269 DPP - Integrating requirements of Industry 4.0 in TVET

Dynamic dashboard

In this extension the dashboard shall be updated every 10 seconds. To achieve

this task use a interval object with 10 seconds interval. Create a callback

function which is called with the defined interval. In the callback function read in

the updated database values and update your visualization automatically.

Steps:

1. Connect to database

2. Define interval object

3. Create a dashboard

a. Create the base structure of the dashboard

b. Set the background to be in gray colour

c. Create callback function

i. Load the stored values of all sensors and their

corresponding

ii. For every sensor create one diagram

iii. Set the title of every diagram to the sensor name

iv. Set the y axis to be the sensor value

v. Set the x axis to be the timestamp of the corresponding

sensor value

vi. Update the plot

4. Start the measurement

5. Deploy the visualization

270 DPP - Integrating requirements of Industry 4.0 in TVET

APPENDIX

1. PROJECT REGIONS AND

PARTNERING TVET INSTITUTES

271 DPP - Integrating requirements of Industry 4.0 in TVET

APPENDIX

Chart 1: Procedural programming ... 29
Chart 2: Condition function .. 31
Chart 3: Condition programming path .. 31
Chart 4: Scan cycle of PLC .. 35
Chart 5: Cycle and real time .. 36
Chart 6: Class Possibilities .. 50
Chart 7: Example of inheriting properties of the parent class 60
Chart 8: Process of software testing .. 76
Chart 9: Types of software testing .. 78
Chart 10: Operating cycle on PLC... 105
Chart 11: I/O structure of the microcontroller ... 118
Chart 12: Function block diagram of microcontroller 119
Chart 13: Memory distribution in microcontrollers .. 120

Table 1: Comparison of procedural
 programming vs. object-oriented programming 47
Table 2: Comparison of Class and Object .. 48
Table 3: Comparison of Black Box, White Box and Grey Box Testing............ 91
Table 4: Control signal board .. 106
Table 5: Database ... 190
Table 6: Join function .. 194
Table 7: Artwork database template.. 197
Table 8: Explanation for Figure 171 .. 204

Illustration 1: Realistic microchip processor .. 8
Illustration 2: Electronic board components .. 19
Illustration 3: Data visualizer graphic .. 21
Illustration 4: Electronic control board element ... 71
Illustration 5: CPU processor lighting circuits .. 158
Illustration 6: Cloud data storage and secure data storage cloud server 203
Illustration 7: Data analysis with dashboard .. 236
Illustration 8: Object-Oriented Programming ... 246
Illustration 9: Future artificial intelligence robot and cyborg 248

2. LIST OF CHARTS

3. LIST OF TABLES

4. LIST OF ILLUSTRATION

272 DPP - Integrating requirements of Industry 4.0 in TVET

APPENDIX

Figure 1: Windows system command interface ... 39

Figure 2: Microsoft windows command window screen 40

Figure 3: Demonstration between “Class” and “Object” 51

Figure 4: OOP Example .. 51

(Source: https://www.clipartfree.de)

Figure 5: Inheritance Python ... 56

Figure 6: Inheritance – Overriding ... 56

Figure 7: Logo of pandas .. 57

(Source:https://www.pandas.pydata.org/pandasdocs/stable/getting_started/intr

o_tutorials/01_table_oriented.html)

Figure 8: Sample of Pandas Dataframe .. 57

Figure 9: Sample of Python Dataframe ... 57

Figure 10: Explanation of parts of figure ... 59

Figure 11: Graphical user interfaces ... 60

Figure 12: Inheritance Overview via Tree; node width = NIV, node height =

NOM and colour = WLOC ... 65

Figure 13: ATM machine system illustration ... 72

Figure 14: Illustration of Verification and Validation Model 75

Figure 15: Different kinds of manual testing .. 81

Figure 16: Illustration of high cost of software defects 83

(Source: Jones C, 2008, Applied software measurement: global

analysis of productivity and quality, New York : McGraw-Hill)

Figure 17: Objectives of software test plan ... 84

(Source: 5 steps to Set Smart Objectives | GHCC, Atlanta, Georgia,
https://ghcc.org/en/5-steps-to-set-smart-objectives-examples/)

Figure 18: Software testing plan.. 86

(Source: Why Testing is Important in the Software Development Life Cycle -
UTOR (u-tor.com), https://u-tor.com/topic/importance-of-testing-in-sdlc)

Figure 19: Test case for software .. 88

5. LIST OF FIGURES

https://www.clipartfree.de/
https://www.pandas.pydata.org/pandasdocs/stable/getting_started/intro_tutorials/01_table_oriented.html
https://www.pandas.pydata.org/pandasdocs/stable/getting_started/intro_tutorials/01_table_oriented.html
https://ghcc.org/en/5-steps-to-set-smart-objectives-examples/
https://ghcc.org/en/5-steps-to-set-smart-objectives-examples/
Why%20Testing%20is%20Important%20in%20the%20Software%20Development%20Life%20Cycle%20-%20UTOR%20(u-tor.com)
Why%20Testing%20is%20Important%20in%20the%20Software%20Development%20Life%20Cycle%20-%20UTOR%20(u-tor.com)
https://u-tor.com/topic/importance-of-testing-in-sdlc

273 DPP - Integrating requirements of Industry 4.0 in TVET

(Source: How to Write Test Cases for Software: Examples & Tutorial
(parasoft.com), https://www.parasoft.com/blog/how-to-write-test-cases-for-
software-examples-tutorial/)

Figure 20: Resource planning in project management 90

(Source: Stafiz - Activity management, resource planning, time tracking and
billing, https://stafiz.com/en/)

Figure 21: Life Cycle of automation testing ... 91

(Source: All You Need To Know About Automation Testing Life Cycle
(lambdatest.com), https://www.lambdatest.com/blog/all-you-need-to-know-
about-automation-testing-life-cycle/)

Figure 22: Illustration of Microcontroller .. 94

Figure 23: Basic Structure of a Microcontroller ... 97

Figure 24: Microcontroller and PLC .. 101

Figure 25: PLCs Architecture ... 102

Figure 26: PLC hardware structure .. 103

Figure 27: Microcontroller’s Architecture ... 104

Figure 28: Ladder logic/diagram.. 106

Figure 29: Instruction on software download .. 109

Figure 30: Instruction on balenaEtcher Setup 1 .. 109

Figure 31: Instruction on balenaEtcher Setup 2 .. 110

Figure 32: Instruction on balenaEtcher Setup 3 .. 110

Figure 33: Instruction on balenaEtcher Setup 4 .. 111

Figure 34: Instruction on balenaEtcher Setup 5 .. 111

Figure 35: Instruction on balenaEtcher Setup 6 .. 112

Figure 36: Instruction on Rasperry Pi setup 1 ... 112

Figure 37: Illustration of event driven .. 113

Figure 38: Comparison of Delay driven vs Timer driven 115

Figure 39: Raspberry Pi4 .. 118

Figure 40: XDK sensor .. 119

Figure 41: Illustration of Hard vs Soft RTOS .. 119

Figure 42: Pulse width modulation .. 126

(Source:https://upload.wikimedia.org/wikipedia/commons/0/03/RGB_farbwuerf

el.jpg)

Figure 43: Sensor Set 2.0 für Raspberry Pi 4 Modell B 129

(Source: Book: German-Sensor Set 2.0 für Raspberry Pi 4 Modell B

2020.07.08 - SunFounder)

https://www.parasoft.com/blog/how-to-write-test-cases-for-software-examples-tutorial/
https://www.parasoft.com/blog/how-to-write-test-cases-for-software-examples-tutorial/
https://www.parasoft.com/blog/how-to-write-test-cases-for-software-examples-tutorial/
https://www.parasoft.com/blog/how-to-write-test-cases-for-software-examples-tutorial/
https://stafiz.com/en/
https://stafiz.com/en/
https://stafiz.com/en/
https://www.lambdatest.com/blog/all-you-need-to-know-about-automation-testing-life-cycle/
https://www.lambdatest.com/blog/all-you-need-to-know-about-automation-testing-life-cycle/
https://www.lambdatest.com/blog/all-you-need-to-know-about-automation-testing-life-cycle/
https://www.lambdatest.com/blog/all-you-need-to-know-about-automation-testing-life-cycle/
https://upload.wikimedia.org/wikipedia/commons/0/03/RGB_farbwuerfel.jpg
https://upload.wikimedia.org/wikipedia/commons/0/03/RGB_farbwuerfel.jpg

274 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 44: Fundamentals of state machines ... 133

Figure 45: Example system state diagram .. 134

Figure 46: Hardware used to implement the example 137

Figure 47: Webbased communication ... 143

Figure 48: Client Server Communication .. 147

Figure 49: Client Server model.. 148

Figure 50: Working principle of Client Server model 149

Figure 51: Publish/subscribe pattern ... 156

Figure 52: CPS i4.0 training system (front view) ... 161

Figure 53: Cubes at start under RFID antenna ... 162

Figure 54: Magazine cylinder with two reed contacts 163

Figure 55: CPSi4.0 workpiece positions Stations (to fig. 54) 164

Figure 56: Cube detected by capacitive sensor .. 165

Figure 57: Contour check cylinder with position sensor for base part

(above) and cover part (below) ... 165

Figure 158: Inductive sensor with aluminum cube (above) and

light barrier with plastic cube (below) .. 166

Figure 159: Light conductor stops cube under RFID antenna (above

and wrong cube in ejection position (below) ... 167

Figure 160: Bottling station full setup, cleaning(left), filling (middle) and

capping (right) ... 168

Figure 161: Cleaning station ... 169

Figure 162: Filling station .. 170

Figure 163: Capping station .. 170

Figure 164: Visualise curve ... 172

Figure 165: Linear interpolate ... 173

Figure 166: XDK sensor structure .. 175

Figure 167: XDK sensor function .. 175

Figure 168: Database security ... 186

Figure 169: ERM model of a book management system 199

Figure 170: ERM model show all the relationship .. 201

Figure 171: CPS i4.0 training system (front view) ... 205

Figure 172: Cubes at start under RFID antenna ... 206

Figure 173: Magazine cylinder with two reed contacts 207

275 DPP - Integrating requirements of Industry 4.0 in TVET

Figure 174: CPSi4.0 workpiece positions ... 208

Figure 175: Cube detected by capacitive sensor .. 209

Figure 176: Contour check cylinder with position sensor for

base part (above) and cover part (below) ... 210

Figure 177: Inductive sensor with aluminum cube (above) and

light barrier with plastic cube (below) .. 211

Figure 178: Light conductor stops cube under RFID antenna (above)

and wrong cube in ejection position (below) ... 212

Figure 179: Bottling station full setup, cleaning(left), filling (middle)

and capping (right) .. 213

Figure 180: Cleaning station ... 214

Figure 181: Filling station .. 215

Figure 182: Capping station .. 216

Figure 183: Example of Databoads ... 218

Figure 184: Compare the differences between Reports and Dashboards ... 219

Figure 185: Compare the similarity between Reports and Dashboards 227

Figure 186: Show only the most important content 230

Figure 187: Use the right size and position .. 231

Figure 188: Add alerts as needed .. 232

Figure 189: Group related metrics together ... 233

Figure 190: Dashboard - easier to read ... 234

Figure 191: Dashboard brief .. 235

Figure 192: Operational Dashboard Example ... 235

Figure 193: Analytical Dashboard Example .. 236

Figure 194: Strategic Dashboard Example ... 251

Figure 195: Analytical Dashboard Example .. 252

Figure 196: Strategic Dashboard Example ... 253

Figure 197: Illustration of Data preparation ... 257

Figure 198: XDK sensor structure ... 261

Figure 199: XDK sensor function .. 262

276 DPP - Integrating requirements of Industry 4.0 in TVET

Data banks Handbook

Informatics Handbook

Mechatronics Handbook and textbook
Mechatronics Textbook

Hồ Viết Bình, Tự động hóa quá trình sản xuất (Automatisierung von

Produktionsprozessen), University of Technology and Education, Ho Chi

Minh City, Viet Nam

Graphic

https://www.anodot.com

https://www.datapine.com

https://www.electronicshub.org/microcontrollers-basics-structure-

applications/

https://www.geeksforgeeks.org

https://www.geckoboard.com

https://www.gupea.ub.gu.se

https://www.heptapod.com

https://www.toucantoco.com

https://www.w3schools.in

Stefan Paschek, Database

Stefan Paschek, Database System

Stefan Paschek, Exercises Database

Stefan Paschek, Microcontroller

Stefan Paschek, Microcontroller Exercises

Stefan Paschek, Microcontroller Project: Collecting Data in an I4.0 Setup

Photo/graphic pages (cover photos & illustrations): Freepik/cong.inwent

REFERENCES

https://www.anodot.com/
https://www.datapine.com/
https://www.electronicshub.org/microcontrollers-basics-structure-applications/
https://www.electronicshub.org/microcontrollers-basics-structure-applications/
https://www.geeksforgeeks.org/
https://www.geckoboard.com/
https://www.gupea.ub.gu.se/
https://www.heptapod.com/
https://www.toucantoco.com/
https://www.w3schools.in/

The training module was developed in the frame of the Development
Partnership with the Private Sector (DPP) Integrating Requirements of
Industry 4.0 in TVET. The DPP is implemented jointly by the cooperation
partners Bosch Rexroth AG, LILAMA 2 International Technology College
and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)
GmbH, supported by the develoPPP programme of the German Federal
Ministry for Economic Cooperation and Development (BMZ).

Viet Nam, 12/2021

